In mathematics, a set of n functions f1, f2, ..., fn is unisolvent (meaning "uniquely solvable") on a domain Ω if the vectors are linearly independent for any choice of n distinct points x1, x2 ... xn in Ω. Equivalently, the collection is unisolvent if the matrix F with entries fi(xj) has nonzero determinant: det(F) ≠ 0 for any choice of distinct xj's in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions. That is, a vector space of functions of dimension n is unisolvent if given any basis (equivalently, a linearly independent set of n functions), the basis is unisolvent (as a set of functions). This is because any two bases are related by an invertible matrix (the change of basis matrix), so one basis is unisolvent if and only if any other basis is unisolv
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |