An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon.

Property Value
dbo:abstract
  • تخليق العناصر بدأ في الشمس بتحول الهيدروجين الذي يكون 77 % من مادتها إلى هيليوم من خلال الاندماج النووي، كما تحتوي الشمس على الهيليوم من الأصل بنسبة 23 % من كتلتها. هذا المرحلة من عمر الشمس تمر بها جميع النجوم أيضا، فالشمس ما هي إلا أحد النجوم متوسطة الحجم. فإذا ما تحول الهيدروجين وكتلته الذرية 1 إلى الهيليوم وكتلته الذرية 4 تعمل الجاذبية على ضغط قلب النجم إلى حيز أصغر ويصاحب ذلك ارتفاع في درجة الحرارة وعندها يبدأ اندماج الهيليوم. ويتميز اندماج الهيليوم بما يسمى تفاعل ألفا الثلاثي أو بالإنجليزية Triple-alpha process وهي عدة تفاعلات تندمج فيها ثلاثة من أنوية الهيليوم وهي أشعة ألفا ويكونوا الكربون الذي تبلغ كتلته 12. (ar)
  • El procés triple alfa és el procés pel qual tres nuclis d'heli (partícules alfa) es transformen en un nucli de carboni. Aquesta reacció nuclear de fusió només ocorre a velocitats apreciables a temperatures per sobre de 100.000.000 kèlvins i en nuclis estel·lars amb una gran abundància d'heli. Per tant, aquest procés només és possible en les estrelles més antigues, on l'heli produït per les cadenes protó-protó i el cicle CNO s'ha acumulat en el nucli. Quan tot l'hidrogen present s'ha consumit, el nucli es col·lapsa fins que s'arriben a les temperatures necessàries per a iniciar la fusió d'heli. 4He + 4He ↔ 8Be8Be + 4He ↔ 12C + γ + 7,367 MeV L'energia neta alliberada en el procés és de 7,275 MeV El 8Be produït durant la primera etapa és molt inestable i decau altra vegada en dos nuclis d'heli en 2.6·10-16 segons. De totes maneres, en les condicions en les quals es fusiona l'heli sempre hi ha petites quantitats de 8Be presents en equilibri; la captura d'una altra partícula alfa dona lloc al 12C. El procés global de conversió de tres partícules alfa en un nucli de 12C es denomina procés triple alfa. Ja que aquest procés és improbable, a causa de l'escassa quantitat de 8Be present en un moment donat, es necessita moltíssim temps per a formar carboni. Com a conseqüència no es va produir carboni durant el Big Bang, ja que la temperatura va descendir a nivells inferiors als requerits perquè es doni aquesta reacció. Normalment, la probabilitat que es doni el procés triple alfa hauria de ser extremadament petita. Però el nivell energètic inferior del beril·li-8 té exactament la mateixa energia que dues partícules alfa, i en la segona etapa, el 8Be i el 4He tenen exactament la mateixa energia que l'estat excitat del 12C. Aquestes ressonàncies incrementen substancialment les possibilitats que una partícula alfa incident es combini amb un nucli de beril·li-8 per donar lloc a un nucli de carboni. L'existència d'aquesta ressonància va ser predita per Fred Hoyle abans que s'adonés realment de la seva necessitat perquè es formés carboni. Una reacció secundària del procés és la fusió d'un nucli de carboni-12 amb altra partícula alfa per a donar ¹⁶O estable, amb alliberament d'energia en forma de fotó gamma: 12C + 4He → ¹⁶O + γ La següent etapa on l'oxigen format es combina amb altra partícula alfa per a donar lloc a neó és més dificultosa, a causa de les regles d'espín nuclear, i per tant no poden formar-se elements més pesats per aquesta via. Com a resultat d'aquestes reaccions, es formen grans quantitats de carboni i oxigen però només fraccions diminutes d'aquests es transformen en neó i altres nuclis més pesats, sent per tant aquests dos les principals cendres de la combustió de l'heli. Les ressonàncies nuclears que donen lloc a tals quantitats de carboni i oxigen se citen generalment com evidència del principi antròpic. Les reaccions de nucleosíntesi per fusió nuclear només produeixen elements fins al 56Fe, el nucli atòmic més estable; els elements més pesats es produeixen per processos captura neutrònica. La captura lenta, el procés S, produeix aproximadament la meitat d'aquests elements. L'altra meitat es produeix en el procés R o captura ràpida, procés que probablement tingui lloc en el nucli de les supernoves de col·lapse (tipus II). (ca)
  • 3-alfa reakce (3 alfa reakce, 3α reakce, Salpeterův proces) je řada několika reakcí při nichž ze tří heliových jader (alfa částic) vzniká jádro uhlíku. K této reakci dochází ve starších hvězdách, které opouštějí hlavní posloupnost a již nemají dostatek vodíku pro udržení proton-protonového cyklu ve svém jádře. (cs)
  • Durch den Drei-Alpha-Prozess (3α-Prozess) werden im Inneren von Sternen drei Helium-Kerne (α-Teilchen) durch Kernfusionsreaktionen in Kohlenstoff umgewandelt und senden dabei Gammastrahlung aus. Dies wird auch als Heliumbrennen oder, nach seinem Entdecker Edwin Salpeter, als Salpeter-Prozess bezeichnet. (de)
  • Η διαδικασία τρία- άλφα (3α) είναι ένα σύνολο αντιδράσεων πυρηνικής σύντηξης με τις οποίες τρεις πυρήνες ηλίου-4 μετατρέπονται σε άνθρακα-12. (el)
  • El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión solo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso solo es posible en las estrellas más viejas, donde el helio producido por las cadenas protón-protón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para iniciar la fusión de helio. 4He + 4He ↔ 8Be8Be + 4He ↔ 12C + γ + 7,367 MeV La energía neta liberada en el proceso es de 7,275 MeV El 8Be producido durante la primera etapa es muy inestable y decae otra vez en dos núcleos de helio en 2,6·10-16 segundos. De todas formas, en las condiciones en las que se fusiona el helio siempre hay pequeñas cantidades de 8Be presentes en equilibrio; la captura de otra partícula alfa da lugar al 12C. El proceso global de conversión de tres partículas alfa en un núcleo de 12C se denomina proceso triple alfa. Ya que dicho proceso es improbable, debido a la escasa cantidad de 8Be presente en un momento dado, se necesita muchísimo tiempo para formar carbono. Como consecuencia no se produjo carbono durante el Big Bang, ya que la temperatura descendió a niveles inferiores a los requeridos para que se dé esta reacción. Normalmente, la probabilidad de que se dé el proceso triple alfa debería ser extremadamente pequeña. Pero el nivel energético inferior del berilio-8 tiene exactamente la misma energía que dos partículas alfa, y en la segunda etapa, el 8Be y el 4He tienen exactamente la misma energía que el estado excitado del 12C. Estas resonancias incrementan sustancialmente las posibilidades de que una partícula alfa incidente se combine con un núcleo de berilio-8 para dar lugar a un núcleo de carbono. La existencia de esta resonancia fue predicha por Fred Hoyle antes de que se diera cuenta realmente de su necesidad para que se formara carbono. Una reacción secundaria del proceso es la fusión de un núcleo de carbono-12 con otra partícula alfa para dar 16O estable, con liberación de energía en forma de fotón gamma: 12C + 4He → 16O + γ La siguiente etapa donde el oxígeno formado se combina con otra partícula alfa para dar lugar a neón es más dificultosa, debido a las reglas de espín nuclear, y por tanto no pueden formarse elementos más pesados por esta vía. Como resultado de estas reacciones, se forman grandes cantidades de carbono y oxígeno pero solo fracciones diminutas de estos se transforman en neón y otros núcleos más pesados; son por tanto estos dos las principales cenizas de la combustión del helio. Las resonancias nucleares que dan lugar a tales cantidades de carbono y oxígeno se citan generalmente como evidencia del principio antrópico. Las reacciones de nucleosíntesis por fusión nuclear solo producen elementos hasta el 56Fe, el núcleo atómico más estable; los elementos más pesados se producen por procesos captura neutrónica. La captura lenta, el proceso S, produce aproximadamente la mitad de dichos elementos. La otra mitad se produce en el proceso R o captura rápida, proceso que probablemente tenga lugar en el núcleo de las supernovas de colapso (tipo II). (es)
  • En astrophysique, la réaction triple alpha désigne un ensemble de réactions de fusion nucléaire convertissant trois particules α (noyaux d'hélium 4) en noyau de carbone. Les étoiles âgées accumulent de l'hélium en leur cœur comme produit de la chaîne proton-proton. Alors que cet hélium s'accumule, il tend à fusionner avec d'autres noyaux d'hydrogène (protons) ou d'hélium (particules α) pour produire des nucléides très instables qui se désintègrent instantanément en noyaux plus petits. Lorsque l'hydrogène s'épuise, les réactions de fusion nucléaire de l'hydrogène en hélium ralentissent, d'où une baisse de la pression de radiation au cœur de l'étoile et donc contraction de celle-ci pour atteindre un nouvel équilibre hydrostatique : le cœur de l'étoile se comprime et s'échauffe pour atteindre environ 100 MK, accélérant la fusion des noyaux d'hélium de telle sorte qu'une concentration suffisante de béryllium 8 puisse être maintenue, malgré sa durée de demi-vie extrêmement brève, permettant la fusion d'un troisième noyau d'hélium pour donner du carbone 12, qui est stable : Le bilan énergétique net de cette réaction, appelée « triple α » puisqu'elle résulte en la fusion de trois particules α, est 7,275 MeV. La cinétique de cette réaction est très lente en raison de l'instabilité du béryllium 8 : c'est la raison pour laquelle le Big Bang n'a pas pu former de carbone, car la température de l'Univers a baissé bien trop rapidement pour ce faire. La probabilité de fusion de trois noyaux d'hélium, a priori infime, est sensiblement accrue par deux faits successifs : * l'état fondamental du béryllium 8 a quasiment la même énergie que la somme de celles de deux particules α ; * le carbone 12 possède un état excité, connu sous le nom d'état de Hoyle, dont l'énergie est quasiment égale à la somme de celles d'un noyau d'hélium et d'un noyau de béryllium 8. L'existence de ce niveau résonnant, alors inconnu, fut prédit par Fred Hoyle en 1954 au cours de ses recherches sur la nucléosynthèse stellaire. Elle fut confirmée par des mesures ultérieures par William Fowler. Ces résonances augmentent considérablement la probabilité qu'une particule alpha se combine avec un noyau de béryllium 8 pour former un atome de carbone. Le fait que l'abondance du carbone dépende ainsi de valeurs bien précises de niveaux énergétiques fut parfois avancé de façon très controversée comme une preuve du principe anthropique. La théorie que le carbone à l’intérieur des étoiles doit être synthétisé par l’intermédiaire de la réaction triple alpha, par fusion de noyaux d’hélium, provient de l'astrophysicien Edwin Salpeter au début des années 1950 . Comme effet secondaire du processus, certains noyaux de carbone peuvent se fusionner avec des noyaux d'hélium additionnels en produisant un isotope stable d'oxygène avec libération d'énergie : 126C + 42He ⟶ 168O + 7,162 MeV. L'étape suivante où l'oxygène se combine lui aussi avec une particule alpha pour former un atome de néon est plus difficile à cause des règles concernant le spin nucléaire. Ceci a pour conséquence que la nucléosynthèse stellaire produit de grande quantité de carbone et d'oxygène mais une partie seulement de ces éléments sont à leur tour convertis en néon et en éléments plus lourds. La fusion nucléaire produit de l'énergie seulement jusqu'au fer ; les éléments plus lourds sont créés lors de l'explosion de supernovas avec absorption d'énergie. (fr)
  • The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. (en)
  • 삼중알파과정(triple alpha process)은 세 개의 헬륨 원자핵(알파 입자)가 탄소로 변화하는 핵융합 과정이다. 이 급격한 핵융합 반응은 100,000,000 켈빈의 온도에서, 즉 헬륨이 풍부한 항성 내부에서만 발생할 수 있다. 오래된 항성 내부에는 양성자-양성자 연쇄나 CNO 순환의 결과로 생성된 헬륨이 쌓여있게 된다. 항성의 붕괴를 지탱하던 수소 연소가 끝나게 되면, 중심핵은 스스로의 중력에 의해 붕괴하게 되며, 붕괴는 압력을 증가시키고, 따라서 중심핵의 온도는 급격히 증가한다. 이윽고 헬륨 연소가 가능해지는 온도에 도달하면, 다음과 같은 반응이 시작된다. 4He + 4He ↔ 8Be - 92 KeV8Be + 4He ↔ 12C + γ + 7.367 MeV 이 과정에서 방출되는 순에너지는 7.275 MeV이다. 첫 번째 과정에서 발생하는 베릴륨-8은 불안정하며, 2.6×10-16 초 정도에 두 개의 헬륨핵으로 붕괴한다. 하지만 헬륨 연소가 일어나는 상황이라면, 베릴륨-8은 소수나마 평형상태로 존재할 수 있으며, 다른 알파 입자를 포획하여 탄소-12로 변하게 된다. 즉 탄소-12를 형성하기 위해서는 세 개의 알파 입자가 필요하며, 이러한 이유로 "삼중 알파 과정"이라고 불린다. 삼중 알파 과정이 어지간해서는 발생하지 않기 때문에, 탄소를 형성하기 위해서는 오랜 시간이 필요하다. 이는 빅뱅시에 탄소가 형성되지 않았음을 의미한다. 즉 빅뱅 이후 급격히 온도가 감소하여 핵융합에 필요한 온도 이하로 떨어졌기 때문이다. 일반적으로 삼중 알파 과정이 발생하는 확률은 극도로 낮다. 하지만 베릴륨-8의 바닥 상태의 에너지는 거의 두 개의 알파 입자의 에너지와 동일하다. 두 번째 과정에서의 베릴륨-8과 헬륨-4의 에너지의 합은 탄소-12의 들뜬 상태에서의 에너지와 같다. 이러한 이유로, 입사 알파 입자가 베릴륨-8과 융합해서 탄소를 형성할 확률은 크게 증가하게 된다. 삼중 알파 과정의 부가적인 효과로서, 일부 탄소 원자핵은 추가의 헬륨과 결합하여 산소의 안정한 동위원소를 형성하고 에너지를 방출한다. 12C + 4He → 16O + γ 여기서 발생한 산소가 다른 알파 입자와 결합하여 네온을 형성하는 다음 연쇄 과정은 핵-스핀 법칙에 따라 발생하는 것이 매우 어렵다. 이러한 까닭으로 항성 핵합성은 부산물로 엄청난 양의 탄소와 산소를 형성하지만 네온 및 기타 무거운 원소는 만들어내지 못한다. 탄소 및 산소는 이른바 헬륨 핵융합의 찌꺼기이다. 핵융합 과정은 철까지의 원소만 형성할 수 있다. 더 무거운 원소의 경우는 주로 중성자 포획에 의해 만들어진다. 느린 중성자 포획 과정인 S-과정은 무거운 원소의 거의 반을 만들어내며, 다른 반은 빠른 중성자 포획 과정인 R-과정에 의해서 초신성 등에서 만들어지는 것으로 알려져 있다. (ko)
  • Il processo tre alfa è il processo per cui tre nuclei di elio (particella α) sono alla fine trasformati in carbonio dopo una complessa serie di reazioni nucleari che passa attraverso la sintesi del berillio-8, che è una reazione endotermica cioè assorbe energia dal plasma. Fa parte delle reazioni nucleari della nucleosintesi stellare, e si pensa sia che il passaggio dal ciclo CNO al processo tre alfa sia connesso con la fase di pulsazione che attraversano alcune stelle chiamate cefeidi. (it)
  • トリプルアルファ反応(トリプルアルファはんのう、triple-alpha process)とは、3個のヘリウム4の原子核(アルファ粒子)が結合して炭素12の原子核に変換される核融合反応の1つである。 (ja)
  • O processo triplo alfa é o processo pelo qual três núcleos de hélio (partículas alfa) se transformam em um núcleo de carbono. Esta reação nuclear de fusão só ocorre a velocidades elevadas a temperaturas acima de 100 milhões de kelvin e em núcleos estelares com uma grande abundância de hélio. Portanto, este processo só é possível nas estrelas mais velhas, onde o hélio produzido pela cadeia próton-próton e pelo ciclo CNO se tenha acumulado no núcleo. Quando todo o hidrogênio presente se tenha consumido, o núcleo se colapsa até que se alcançam as temperaturas necessárias para iniciar a fusão do hélio: 4He + 4He ↔ 8Be8Be + 4He ↔ 12C + γ + 7.367 MeV A energia líquida liberada no processo é de 7.275 MeV. O 8Be produzido durante a primeira etapa é muito instável e decai outra vez em dois núcleos de hélio em 2.6·10−16 segundos. De todas as formas, nas condições nas que se fusiona o hélio sempre há pequenas quantidades de 8Be presentes em equilíbrio; a captura de outro átomo de hélio dá lugar ao 12C. O processo global de conversão de três partículas alfa em um núcleo de 12C se denomina processo triplo alfa. Já que o dito processo é improvável, devido à escassa quantidade de 8Be presente em um momento dado, se necessita de um longo tempo para formar carbono. Como consequência não se produziu carbono durante o Big Bang, já que a temperatura diminuiu a níveis inferiores aos requeridos para que se dê esta reação. Normalmente, a probabilidade de que se dê o processo triplo alfa deveria ser extremadamente pequena. Mas o nível energético inferior do berílio-8 tem exatamente a mesma energia que duas partículas alfa, e na segunda etapa, o 8Be e o 4He tem exatamente a mesma energia que o estado excitado do 12C. Estas ressonâncias incrementam substancialmente as possibilidades de que uma partícula alfa incidente se combine com um núcleo de berílio-8 para dar lugar a um núcleo de carbono. A existência desta resonância foi prevista por Fred Hoyle antes de que se desse conta realmente de sua necessidade para que se forme carbono. Uma reação secundária do processo é a fusão de um núcleo de carbono-12 com outra partícula alfa para dar 16O estável, com liberação de energia em forma de radiação gama: 12C + 4He → 16O + γ A seguinte etapa onde o oxigênio formado se combina com outra partícula alfa para dar lugar ao neônio é mais difícil, devido às regras de spin nuclear, e portanto não podem formar-se elementos mais pesados por esta via. Como resultado destas reações, se formam grandes quantidades de carbono e oxigênio mas só frações diminutas destes se transformam em neônio e outros núcleos mais pesados, sendo portanto estes dois os principais produtos da fusão do hélio. As resonâncias nucleares que dão lugar a tais quantidades de carbono e oxigênio se citam geralmente como evidência do princípio antrópico. As reações de nucleossíntese por fusão nuclear só produzem elementos até o 56Fe, o núcleo atômico mais estável; os elementos mais pesados se produzem por processos captura neutrônica. A captura lenta, o processo S, produz aproximadamente a metade destes elementos. A outra metade se produz no processo R ou captura rápida, processo que provavelmente tenha lugar no núcleo das supernovas de colapso (tipo II). (pt)
  • Het triple-alfaproces is een reeks nucleaire fusiereacties waarbij drie helium-4-kernen (ook wel alfadeeltjes genoemd) worden omgezet in een koolstof-12-kern. Het proces werd in de jaren 50 van de 20e eeuw voorgesteld door Fred Hoyle en later beschreven door Hoyle, William Fowler, , en . (nl)
  • Trippel-alfa-processen är en kärnreaktion där heliumkärnor (alfapartiklar) fusionerar till kol och i massiva stjärnor till syre och neon. Kärnreaktionen är dominerande i medelstora och stora stjärnor som passerat huvudserien och kommit in i jättestjärnfasen och svällt upp till röda jättar. Processen föreslogs av astrofysikerna Fred Hoyle (1946), Edwin Salpeter (1951) och Ernst Öpik (1951). William A. Fowler och Subramanyan Chandrasekhar fick 1983 Nobelpriset i fysik för nukleosyntesen i stjärnor i vilket trippelalfaprocessen ingår. (sv)
  • Potrójny proces α – proces syntezy termojądrowej, w którym z trzech jąder helu 4He powstaje jedno jądro węgla 12C. Proces zachodzi w temperaturze większej od 108 K i gęstości plazmy większej od (104–105) g·cm−3. Proces zachodzi spokojnie w jądrze helowym gwiazd o dużej masie, a w gwiazdach o małej masie gwałtownie podczas tzw. błysku helowego. Proces składa się z dwóch reakcji. W pierwszej z nich dwa jądra helu łączą się w jądro berylu: 4He + 4He + 91,8 keV → 8*Be jest to reakcja endotermiczna, podczas której powstaje nietrwałe jądro berylu, może ona zajść tylko wtedy, gdy względna energia kinetyczna zderzających się cząstek α jest większa od 91,8 keV, ponieważ o tyle energia wiązania jądra berylu jest mniejsza od sumy energii wiązania dwóch jąder 4He. Powstające jądro berylu jest nietrwałe i połowa jąder rozpada się w czasie t ≈ 10−16 s, w wyniku czego ustala się równowaga termodynamiczna między stężeniami helu i berylu, zależna od ciśnienia i temperatury. Stężenie berylu silnie wzrasta wraz ze wzrostem temperatury i gęstości. Gdy jądro berylu zderzy się z jądrem helu zachodzi kolejna reakcja, rezonansowa: 8*Be + 4He + 0,287 MeV → 12*C w wyniku czego powstaje jądro węgla wzbudzone do drugiego poziomu energetycznego. Energia potrzebna do zajścia tej reakcji jest energią kinetyczną zderzających się cząstek. Ze względu na bardzo krótki czas połowicznego rozpadu jąder berylu, prawdopodobieństwo zajścia tej reakcji jest bardzo małe i prawie wszystkie jądra berylu rozpadają się na dwie cząstki α. Stosunek prawdopodobieństwa jej zajścia do prawdopodobieństwa rozpadu wynosi w przybliżeniu 10−23. Ponieważ reakcja wychwytu cząstki α przez beryl jest endotermiczna, to reakcja do niej odwrotna, czyli rozpad węgla na beryl i cząstkę α jest bardziej prawdopodobna od przejścia wzbudzonego węgla do stanu podstawowego. Tak też się dzieje, a tylko niewielka liczba jąder 12*C przechodzi do stanu podstawowego emitując dwa fotony: 12*C → 12C + 2γ + 7,654 MeV Całość sumarycznie zapisuje się: 3 4He → 12C + 2γ a energia wyemitowana w całym procesie równa jest: 7,654 MeV – 0,287 MeV – 0,0918 MeV = 7,2752 MeV. Najprawdopodobniej cały istniejący we Wszechświecie węgiel powstał w potrójnym procesie α.Z powodu małego prawdopodobieństwa tego procesu, do powstania węgla nie doszło podczas Wielkiego Wybuchu, lecz dopiero we wnętrzach gwiazd. Istnienie powyższego rezonansu energetycznego przewidział Fred Hoyle. Tempo zachodzenia reakcji wyznaczone przez Williama Fowlera pozwoliło połączyć fizykę jądrową z teorią ewolucji gwiazd. (pl)
  • Потрійна альфа-реакція — послідовність термоядерних реакцій, унаслідок яких три альфа-частинки (ядра гелію-4) утворюють ядро вуглецю-12. Реакція розпочинається у зорях за температури понад 1,5×108 К та густини 5×104 г/см³ і відбувається у два етапи: * спочатку утворюється метастабільне (резонансне) ядро берилію-8: , Q = 0,092 МеВ період його напіврозпаду — 10−16 с. * За короткий час свого існування деякі з утворених ядер берилію взаємодіють ще з однією альфа-частинкою й утворюється збуджене ядро вуглецю-12:, Q = 7,367 МеВ Друга реакція теж відбувається у резонансі й має досить значний перетин, оскільки другий збуджений стан ядра вуглецю-12 (12C**) має енергію 7,65 МеВ, близьку до енергії, що виділяється під час об'єднання двох ядер. Існування збудженого стану ядра вуглецю-12 було передбачено Фредом Хойлом з астрофізичних міркувань (антропний принцип) ще до його експериментального відкриття. Відповідні резонанси було знайдено Вільямом Фаулером. У зір з масою понад 2,25 маси Сонця реакція розпочинається на стадії головної послідовності. У зір з масою від 0,5 до 2,25 M☉ спочатку формується вироджене гелієве ядро (внаслідок перетворення гідрогену на гелій у центральній частині зорі) і реакція розпочинається лише на стадії червоного гіганта, після досягнення потрібної температури та густини, у вигляді спалаху . (uk)
  • Тройна́я ге́лиевая реа́кция (тройно́й а́льфа-проце́сс) — цепочка термоядерных реакций в недрах звёзд, в ходе которой три ядра гелия-4 образуют ядро углерода-12. Фаза устойчивого горения гелия длится примерно 10% от времени, которое звезда проводит на главной последовательности. (ru)
  • 3氦過程是一組核融合反應,通過這些反應,三個氦-4核(α粒子)轉化為碳核 (zh)
dbo:thumbnail
dbo:wikiPageID
  • 93188 (xsd:integer)
dbo:wikiPageLength
  • 19747 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116507781 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 3-alfa reakce (3 alfa reakce, 3α reakce, Salpeterův proces) je řada několika reakcí při nichž ze tří heliových jader (alfa částic) vzniká jádro uhlíku. K této reakci dochází ve starších hvězdách, které opouštějí hlavní posloupnost a již nemají dostatek vodíku pro udržení proton-protonového cyklu ve svém jádře. (cs)
  • Durch den Drei-Alpha-Prozess (3α-Prozess) werden im Inneren von Sternen drei Helium-Kerne (α-Teilchen) durch Kernfusionsreaktionen in Kohlenstoff umgewandelt und senden dabei Gammastrahlung aus. Dies wird auch als Heliumbrennen oder, nach seinem Entdecker Edwin Salpeter, als Salpeter-Prozess bezeichnet. (de)
  • Η διαδικασία τρία- άλφα (3α) είναι ένα σύνολο αντιδράσεων πυρηνικής σύντηξης με τις οποίες τρεις πυρήνες ηλίου-4 μετατρέπονται σε άνθρακα-12. (el)
  • The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. (en)
  • Il processo tre alfa è il processo per cui tre nuclei di elio (particella α) sono alla fine trasformati in carbonio dopo una complessa serie di reazioni nucleari che passa attraverso la sintesi del berillio-8, che è una reazione endotermica cioè assorbe energia dal plasma. Fa parte delle reazioni nucleari della nucleosintesi stellare, e si pensa sia che il passaggio dal ciclo CNO al processo tre alfa sia connesso con la fase di pulsazione che attraversano alcune stelle chiamate cefeidi. (it)
  • トリプルアルファ反応(トリプルアルファはんのう、triple-alpha process)とは、3個のヘリウム4の原子核(アルファ粒子)が結合して炭素12の原子核に変換される核融合反応の1つである。 (ja)
  • Het triple-alfaproces is een reeks nucleaire fusiereacties waarbij drie helium-4-kernen (ook wel alfadeeltjes genoemd) worden omgezet in een koolstof-12-kern. Het proces werd in de jaren 50 van de 20e eeuw voorgesteld door Fred Hoyle en later beschreven door Hoyle, William Fowler, , en . (nl)
  • Trippel-alfa-processen är en kärnreaktion där heliumkärnor (alfapartiklar) fusionerar till kol och i massiva stjärnor till syre och neon. Kärnreaktionen är dominerande i medelstora och stora stjärnor som passerat huvudserien och kommit in i jättestjärnfasen och svällt upp till röda jättar. Processen föreslogs av astrofysikerna Fred Hoyle (1946), Edwin Salpeter (1951) och Ernst Öpik (1951). William A. Fowler och Subramanyan Chandrasekhar fick 1983 Nobelpriset i fysik för nukleosyntesen i stjärnor i vilket trippelalfaprocessen ingår. (sv)
  • Тройна́я ге́лиевая реа́кция (тройно́й а́льфа-проце́сс) — цепочка термоядерных реакций в недрах звёзд, в ходе которой три ядра гелия-4 образуют ядро углерода-12. Фаза устойчивого горения гелия длится примерно 10% от времени, которое звезда проводит на главной последовательности. (ru)
  • 3氦過程是一組核融合反應,通過這些反應,三個氦-4核(α粒子)轉化為碳核 (zh)
  • تخليق العناصر بدأ في الشمس بتحول الهيدروجين الذي يكون 77 % من مادتها إلى هيليوم من خلال الاندماج النووي، كما تحتوي الشمس على الهيليوم من الأصل بنسبة 23 % من كتلتها. هذا المرحلة من عمر الشمس تمر بها جميع النجوم أيضا، فالشمس ما هي إلا أحد النجوم متوسطة الحجم. فإذا ما تحول الهيدروجين وكتلته الذرية 1 إلى الهيليوم وكتلته الذرية 4 تعمل الجاذبية على ضغط قلب النجم إلى حيز أصغر ويصاحب ذلك ارتفاع في درجة الحرارة وعندها يبدأ اندماج الهيليوم. (ar)
  • El procés triple alfa és el procés pel qual tres nuclis d'heli (partícules alfa) es transformen en un nucli de carboni. Aquesta reacció nuclear de fusió només ocorre a velocitats apreciables a temperatures per sobre de 100.000.000 kèlvins i en nuclis estel·lars amb una gran abundància d'heli. Per tant, aquest procés només és possible en les estrelles més antigues, on l'heli produït per les cadenes protó-protó i el cicle CNO s'ha acumulat en el nucli. Quan tot l'hidrogen present s'ha consumit, el nucli es col·lapsa fins que s'arriben a les temperatures necessàries per a iniciar la fusió d'heli. (ca)
  • El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión solo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso solo es posible en las estrellas más viejas, donde el helio producido por las cadenas protón-protón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para iniciar la fusión de helio. (es)
  • En astrophysique, la réaction triple alpha désigne un ensemble de réactions de fusion nucléaire convertissant trois particules α (noyaux d'hélium 4) en noyau de carbone. Les étoiles âgées accumulent de l'hélium en leur cœur comme produit de la chaîne proton-proton. Alors que cet hélium s'accumule, il tend à fusionner avec d'autres noyaux d'hydrogène (protons) ou d'hélium (particules α) pour produire des nucléides très instables qui se désintègrent instantanément en noyaux plus petits. Lorsque l'hydrogène s'épuise, les réactions de fusion nucléaire de l'hydrogène en hélium ralentissent, d'où une baisse de la pression de radiation au cœur de l'étoile et donc contraction de celle-ci pour atteindre un nouvel équilibre hydrostatique : le cœur de l'étoile se comprime et s'échauffe pour atteindre (fr)
  • 삼중알파과정(triple alpha process)은 세 개의 헬륨 원자핵(알파 입자)가 탄소로 변화하는 핵융합 과정이다. 이 급격한 핵융합 반응은 100,000,000 켈빈의 온도에서, 즉 헬륨이 풍부한 항성 내부에서만 발생할 수 있다. 오래된 항성 내부에는 양성자-양성자 연쇄나 CNO 순환의 결과로 생성된 헬륨이 쌓여있게 된다. 항성의 붕괴를 지탱하던 수소 연소가 끝나게 되면, 중심핵은 스스로의 중력에 의해 붕괴하게 되며, 붕괴는 압력을 증가시키고, 따라서 중심핵의 온도는 급격히 증가한다. 이윽고 헬륨 연소가 가능해지는 온도에 도달하면, 다음과 같은 반응이 시작된다. 4He + 4He ↔ 8Be - 92 KeV8Be + 4He ↔ 12C + γ + 7.367 MeV 이 과정에서 방출되는 순에너지는 7.275 MeV이다. 삼중 알파 과정이 어지간해서는 발생하지 않기 때문에, 탄소를 형성하기 위해서는 오랜 시간이 필요하다. 이는 빅뱅시에 탄소가 형성되지 않았음을 의미한다. 즉 빅뱅 이후 급격히 온도가 감소하여 핵융합에 필요한 온도 이하로 떨어졌기 때문이다. 12C + 4He → 16O + γ (ko)
  • Potrójny proces α – proces syntezy termojądrowej, w którym z trzech jąder helu 4He powstaje jedno jądro węgla 12C. Proces zachodzi w temperaturze większej od 108 K i gęstości plazmy większej od (104–105) g·cm−3. Proces zachodzi spokojnie w jądrze helowym gwiazd o dużej masie, a w gwiazdach o małej masie gwałtownie podczas tzw. błysku helowego. Proces składa się z dwóch reakcji. W pierwszej z nich dwa jądra helu łączą się w jądro berylu: 4He + 4He + 91,8 keV → 8*Be Gdy jądro berylu zderzy się z jądrem helu zachodzi kolejna reakcja, rezonansowa: 8*Be + 4He + 0,287 MeV → 12*C 3 4He → 12C + 2γ (pl)
  • O processo triplo alfa é o processo pelo qual três núcleos de hélio (partículas alfa) se transformam em um núcleo de carbono. Esta reação nuclear de fusão só ocorre a velocidades elevadas a temperaturas acima de 100 milhões de kelvin e em núcleos estelares com uma grande abundância de hélio. Portanto, este processo só é possível nas estrelas mais velhas, onde o hélio produzido pela cadeia próton-próton e pelo ciclo CNO se tenha acumulado no núcleo. Quando todo o hidrogênio presente se tenha consumido, o núcleo se colapsa até que se alcançam as temperaturas necessárias para iniciar a fusão do hélio: (pt)
  • Потрійна альфа-реакція — послідовність термоядерних реакцій, унаслідок яких три альфа-частинки (ядра гелію-4) утворюють ядро вуглецю-12. Реакція розпочинається у зорях за температури понад 1,5×108 К та густини 5×104 г/см³ і відбувається у два етапи: Існування збудженого стану ядра вуглецю-12 було передбачено Фредом Хойлом з астрофізичних міркувань (антропний принцип) ще до його експериментального відкриття. Відповідні резонанси було знайдено Вільямом Фаулером. (uk)
rdfs:label
  • تخليق العناصر (ar)
  • Procés triple-alfa (ca)
  • 3-alfa reakce (cs)
  • Drei-Alpha-Prozess (de)
  • Αντίδραση τρία-άλφα (el)
  • Proceso triple-alfa (es)
  • Réaction triple alpha (fr)
  • Processo tre alfa (it)
  • 삼중 알파 과정 (ko)
  • トリプルアルファ反応 (ja)
  • Triple-alfaproces (nl)
  • Proces 3-α (pl)
  • Processo triplo-alfa (pt)
  • Triple-alpha process (en)
  • Trippel-alfa-processen (sv)
  • Тройная гелиевая реакция (ru)
  • 3氦過程 (zh)
  • Потрійна альфа-реакція (uk)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License