About: Toric code

An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order(first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

Property Value
dbo:abstract
  • Le code de Kitaev (aussi appelé le « code torique ») est un code de correction d'erreurs quantiques topologique, qui peut être défini par le formalisme des codes stabilisateurs sur un réseau carré 2D Ce code fait partie de la famille des codes de surfaces et il possède des conditions aux bords périodiques, ce qui forme donc un tore. (fr)
  • The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order(first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev. The toric code gets its name from its periodic boundary conditions, giving it the shape of a torus. These conditions give the model translational invariance, which is useful for analytic study. However, some experimental realizations require open boundary conditions, allowing the system to be embedded on a 2D surface. The resulting code is typically known as the planar code. This has identical behaviour to the toric code in most, but not all, cases. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 29260402 (xsd:integer)
dbo:wikiPageLength
  • 29791 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1121888699 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Le code de Kitaev (aussi appelé le « code torique ») est un code de correction d'erreurs quantiques topologique, qui peut être défini par le formalisme des codes stabilisateurs sur un réseau carré 2D Ce code fait partie de la famille des codes de surfaces et il possède des conditions aux bords périodiques, ce qui forme donc un tore. (fr)
  • The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order(first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev. (en)
rdfs:label
  • Code de Kitaev (fr)
  • Toric code (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License