An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Ruziewicz problem (sometimes Banach–Ruziewicz problem) in measure theory asks whether the usual Lebesgue measure on the n-sphere is characterised, up to proportionality, by its properties of being finitely additive, invariant under rotations, and defined on all Lebesgue measurable sets. This was answered affirmatively and independently for n ≥ 4 by Grigory Margulis and Dennis Sullivan around 1980, and for n = 2 and 3 by Vladimir Drinfeld (published 1984). It fails for the circle. The problem is named after Stanisław Ruziewicz.

Property Value
dbo:abstract
  • In mathematics, the Ruziewicz problem (sometimes Banach–Ruziewicz problem) in measure theory asks whether the usual Lebesgue measure on the n-sphere is characterised, up to proportionality, by its properties of being finitely additive, invariant under rotations, and defined on all Lebesgue measurable sets. This was answered affirmatively and independently for n ≥ 4 by Grigory Margulis and Dennis Sullivan around 1980, and for n = 2 and 3 by Vladimir Drinfeld (published 1984). It fails for the circle. The problem is named after Stanisław Ruziewicz. (en)
  • En mathématiques, le problème de Ruziewicz (parfois appelé problème de Banach-Ruziewicz), qui concerne la théorie de la mesure, pose la question de savoir si la mesure de Lebesgue usuelle sur la n-sphère est caractérisée, à un coefficient multiplicatif près, par les propriétés d'être finiment additive, invariante par isométries, et définie sur tous les ensembles Lebesgue-mesurables. La réponse est affirmative et a été trouvée indépendamment pour n ≥ 4 par Grigory Margulis et Dennis Sullivan vers 1980 et pour n = 2 et 3, par Vladimir Drinfeld (publié en 1984). Elle est négative pour le cercle. Ce problème porte le nom de Stanisław Ruziewicz. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3100245 (xsd:integer)
dbo:wikiPageLength
  • 1844 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1079215996 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, the Ruziewicz problem (sometimes Banach–Ruziewicz problem) in measure theory asks whether the usual Lebesgue measure on the n-sphere is characterised, up to proportionality, by its properties of being finitely additive, invariant under rotations, and defined on all Lebesgue measurable sets. This was answered affirmatively and independently for n ≥ 4 by Grigory Margulis and Dennis Sullivan around 1980, and for n = 2 and 3 by Vladimir Drinfeld (published 1984). It fails for the circle. The problem is named after Stanisław Ruziewicz. (en)
  • En mathématiques, le problème de Ruziewicz (parfois appelé problème de Banach-Ruziewicz), qui concerne la théorie de la mesure, pose la question de savoir si la mesure de Lebesgue usuelle sur la n-sphère est caractérisée, à un coefficient multiplicatif près, par les propriétés d'être finiment additive, invariante par isométries, et définie sur tous les ensembles Lebesgue-mesurables. La réponse est affirmative et a été trouvée indépendamment pour n ≥ 4 par Grigory Margulis et Dennis Sullivan vers 1980 et pour n = 2 et 3, par Vladimir Drinfeld (publié en 1984). Elle est négative pour le cercle. (fr)
rdfs:label
  • Problème de Ruziewicz (fr)
  • Ruziewicz problem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License