dbo:abstract
|
- In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . Let denote the Néron–Severi group of . The polarization also induces an inclusion via . The image of is equal to , i.e., the set of endomorphisms fixed by the Rosati involution. The operation then gives the structure of a formally real Jordan algebra. (en)
- Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2417 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering. (sv)
- In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . (en)
|
rdfs:label
|
- Rosati involution (en)
- Rosatiinvolution (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |