An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on .

Property Value
dbo:abstract
  • In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . Let denote the Néron–Severi group of . The polarization also induces an inclusion via . The image of is equal to , i.e., the set of endomorphisms fixed by the Rosati involution. The operation then gives the structure of a formally real Jordan algebra. (en)
  • Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 34645248 (xsd:integer)
dbo:wikiPageLength
  • 2417 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1074581205 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Inom matematiken är en Rosatiinvolution, uppkallad efter , en involution på den rationella endomorfiringen av en abelsk varietet inducerad av en polarisering. (sv)
  • In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . (en)
rdfs:label
  • Rosati involution (en)
  • Rosatiinvolution (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License