An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Rogers–Szegő polynomials are a family of polynomials orthogonal on the unit circle introduced by Szegő, who was inspired by the continuous q-Hermite polynomials studied by Leonard James Rogers. They are given by where (q;q)n is the descending q-Pochhammer symbol. Furthermore, the satisfy (for ) the recurrence relation with and .

Property Value
dbo:abstract
  • En matemàtiques, els polinomis Rogers–Szegő són una família de dins del cercle unitat introduïts per Gábor Szegő (1926), inspirat pels polinomis q-Hermite continus estudiats per Leonard James Rogers. Venen donats per l'expressióː on (q;q)n és símbol q-Pochhammer descendent. A més, els satisfan (per a ) la relació de recurrènciaː amb i . (ca)
  • In mathematics, the Rogers–Szegő polynomials are a family of polynomials orthogonal on the unit circle introduced by Szegő, who was inspired by the continuous q-Hermite polynomials studied by Leonard James Rogers. They are given by where (q;q)n is the descending q-Pochhammer symbol. Furthermore, the satisfy (for ) the recurrence relation with and . (en)
  • Inom matematiken är Rogers–Szegőpolynomen en familj ortogonala polynom introducerade av Gábor Szegő 1926. De definieras som där (q;q)n är q-Pochhammersymbolen. (sv)
  • 罗杰斯-斯泽格多项式(英語:Rogers–Szegő polynomials)是1926年匈牙利数学家斯泽格首先研究的在单位圆上的正交多项式,以Q阶乘幂定义如下; 前面几个罗杰斯-斯泽格多项式为: (zh)
dbo:wikiPageID
  • 32745764 (xsd:integer)
dbo:wikiPageLength
  • 1684 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1091217854 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En matemàtiques, els polinomis Rogers–Szegő són una família de dins del cercle unitat introduïts per Gábor Szegő (1926), inspirat pels polinomis q-Hermite continus estudiats per Leonard James Rogers. Venen donats per l'expressióː on (q;q)n és símbol q-Pochhammer descendent. A més, els satisfan (per a ) la relació de recurrènciaː amb i . (ca)
  • In mathematics, the Rogers–Szegő polynomials are a family of polynomials orthogonal on the unit circle introduced by Szegő, who was inspired by the continuous q-Hermite polynomials studied by Leonard James Rogers. They are given by where (q;q)n is the descending q-Pochhammer symbol. Furthermore, the satisfy (for ) the recurrence relation with and . (en)
  • Inom matematiken är Rogers–Szegőpolynomen en familj ortogonala polynom introducerade av Gábor Szegő 1926. De definieras som där (q;q)n är q-Pochhammersymbolen. (sv)
  • 罗杰斯-斯泽格多项式(英語:Rogers–Szegő polynomials)是1926年匈牙利数学家斯泽格首先研究的在单位圆上的正交多项式,以Q阶乘幂定义如下; 前面几个罗杰斯-斯泽格多项式为: (zh)
rdfs:label
  • Polinomis Rogers–Szegő (ca)
  • Rogers–Szegő polynomials (en)
  • 罗杰斯-斯泽格多项式 (zh)
  • Rogers–Szegőpolynom (sv)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License