An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers. Mordell's theorem says the group of rational points on an elliptic curve has a finite basis. This means that for any elliptic curve there is a finite subset of the rational points on the curve, from which all further rational points may be generated. If the number of rational points on a curve is infinite then some point in a finite basis must have infinite order. The number of independent basis points with infinite order is the rank of the curve.

Property Value
dbo:abstract
  • In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers. Mordell's theorem says the group of rational points on an elliptic curve has a finite basis. This means that for any elliptic curve there is a finite subset of the rational points on the curve, from which all further rational points may be generated. If the number of rational points on a curve is infinite then some point in a finite basis must have infinite order. The number of independent basis points with infinite order is the rank of the curve. The rank is related to several outstanding problems in number theory, most notably the Birch–Swinnerton-Dyer conjecture. It is widely believed that there is no maximum rank for an elliptic curve, and it has been shown that there exist curves with rank as large as 28, but it is widely believed that such curves are rare. Indeed, Goldfeld and later Katz–Sarnak conjectured that in a suitable asymptotic sense (see ), the rank of elliptic curves should be 1/2 on average. In other words, half of all elliptic curves should have rank 0 (meaning that the infinite part of its Mordell–Weil group is trivial) and the other half should have rank 1; all remaining ranks consist of a total of 0% of all elliptic curves. (en)
dbo:wikiPageID
  • 51244926 (xsd:integer)
dbo:wikiPageLength
  • 9960 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1125002512 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers. Mordell's theorem says the group of rational points on an elliptic curve has a finite basis. This means that for any elliptic curve there is a finite subset of the rational points on the curve, from which all further rational points may be generated. If the number of rational points on a curve is infinite then some point in a finite basis must have infinite order. The number of independent basis points with infinite order is the rank of the curve. (en)
rdfs:label
  • Rank of an elliptic curve (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License