An Entity of Type: PartialDifferentialEquation106670866, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism.

Property Value
dbo:abstract
  • In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism. (en)
  • En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque. Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphismeμ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme. (fr)
dbo:wikiPageID
  • 1471807 (xsd:integer)
dbo:wikiPageLength
  • 996 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1106429878 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • 5549 (xsd:integer)
dbp:title
  • Rado's theorem (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism. (en)
  • En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque. Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphismeμ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme. (fr)
rdfs:label
  • Théorème de Radó (fonctions harmoniques) (fr)
  • Radó's theorem (harmonic functions) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License