Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Theorems in harmonic analysis
An Entity of Type:
Concept
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
dbo:
wikiPageID
33721792
(xsd:integer)
dbo:
wikiPageRevisionID
536414970
(xsd:integer)
rdf:
type
skos
:Concept
rdfs:
label
Theorems in harmonic analysis
(en)
skos:
broader
dbc
:Harmonic_analysis
dbc
:Theorems_in_analysis
skos:
prefLabel
Theorems in harmonic analysis
(en)
prov:
wasDerivedFrom
wikipedia-en
:Category:Theorems_in_harmonic_analysis?oldid=536414970&ns=14
is
dbo:
wikiPageWikiLink
of
dbr
:Riesz–Thorin_theorem
dbr
:Jacquet–Langlands_correspondence
dbr
:Walsh–Lebesgue_theorem
dbr
:Bochner's_theorem
dbr
:Titchmarsh_convolution_theorem
dbr
:Arthur–Selberg_trace_formula
dbr
:Riemann–Lebesgue_lemma
dbr
:Radó–Kneser–Choquet_theorem
dbr
:Radó's_theorem_(harmonic_functions)
dbr
:Plancherel_theorem
dbr
:Steinberg_formula
dbr
:Plancherel_theorem_for_spherical_functions
dbr
:Peter–Weyl_theorem
is
dcterms:
subject
of
dbr
:Riesz–Thorin_theorem
dbr
:Jacquet–Langlands_correspondence
dbr
:Walsh–Lebesgue_theorem
dbr
:Bochner's_theorem
dbr
:Titchmarsh_convolution_theorem
dbr
:Arthur–Selberg_trace_formula
dbr
:Riemann–Lebesgue_lemma
dbr
:Radó–Kneser–Choquet_theorem
dbr
:Radó's_theorem_(harmonic_functions)
dbr
:Plancherel_theorem
dbr
:Steinberg_formula
dbr
:Plancherel_theorem_for_spherical_functions
dbr
:Peter–Weyl_theorem
is
skos:
broader
of
dbc
:Theorems_in_Fourier_analysis
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License