An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, a morphism of schemes f: X → Y is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ⊂ k(x)

Property Value
dbo:abstract
  • In algebraic geometry, a morphism of schemes f: X → Y is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ⊂ k(x) is radicial, i.e. purely inseparable. It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.) Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f. (en)
dbo:wikiPageID
  • 14483490 (xsd:integer)
dbo:wikiPageLength
  • 1837 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1024802879 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In algebraic geometry, a morphism of schemes f: X → Y is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ⊂ k(x) (en)
rdfs:label
  • Radicial morphism (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License