An Entity of Type: company, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In operator theory, quasinormal operators is a class of bounded operators defined by weakening the requirements of a normal operator. Every quasinormal operator is a subnormal operator. Every quasinormal operator on a finite-dimensional Hilbert space is normal.

Property Value
dbo:abstract
  • In operator theory, quasinormal operators is a class of bounded operators defined by weakening the requirements of a normal operator. Every quasinormal operator is a subnormal operator. Every quasinormal operator on a finite-dimensional Hilbert space is normal. (en)
  • 作用素論における準正規作用素(じゅんせいきさようそ、英: quasinormal operator)は正規作用素の条件を緩めた定義を持つ有界作用素のクラスである。 任意の準正規作用素は (subnormal) であり、また有限次元ヒルベルト空間の準正規作用素は必ず正規である。 (ja)
dbo:wikiPageID
  • 7771798 (xsd:integer)
dbo:wikiPageLength
  • 3624 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1051834856 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In operator theory, quasinormal operators is a class of bounded operators defined by weakening the requirements of a normal operator. Every quasinormal operator is a subnormal operator. Every quasinormal operator on a finite-dimensional Hilbert space is normal. (en)
  • 作用素論における準正規作用素(じゅんせいきさようそ、英: quasinormal operator)は正規作用素の条件を緩めた定義を持つ有界作用素のクラスである。 任意の準正規作用素は (subnormal) であり、また有限次元ヒルベルト空間の準正規作用素は必ず正規である。 (ja)
rdfs:label
  • Quasinormaler Operator (de)
  • 準正規作用素 (ja)
  • Quasinormal operator (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License