An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In functional analysis, a branch of mathematics, an operator ideal is a special kind of class of continuous linear operators between Banach spaces. If an operator belongs to an operator ideal , then for any operators and which can be composed with as , then is class as well. Additionally, in order for to be an operator ideal, it must contain the class of all finite-rank Banach space operators.

Property Value
dbo:abstract
  • In functional analysis, a branch of mathematics, an operator ideal is a special kind of class of continuous linear operators between Banach spaces. If an operator belongs to an operator ideal , then for any operators and which can be composed with as , then is class as well. Additionally, in order for to be an operator ideal, it must contain the class of all finite-rank Banach space operators. (en)
dbo:wikiPageID
  • 47986929 (xsd:integer)
dbo:wikiPageLength
  • 3033 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 924093561 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdfs:comment
  • In functional analysis, a branch of mathematics, an operator ideal is a special kind of class of continuous linear operators between Banach spaces. If an operator belongs to an operator ideal , then for any operators and which can be composed with as , then is class as well. Additionally, in order for to be an operator ideal, it must contain the class of all finite-rank Banach space operators. (en)
rdfs:label
  • Operator ideal (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License