An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory and statistics, a normal variance-mean mixture with mixing probability density is the continuous probability distribution of a random variable of the form where , and are real numbers, and random variables and are independent, is normally distributed with mean zero and variance one, and is continuously distributed on the positive half-axis with probability density function . The conditional distribution of given is thus a normal distribution with mean and variance . A normal variance-mean mixture can be thought of as the distribution of a certain quantity in an inhomogeneous population consisting of many different normal distributed subpopulations. It is the distribution of the position of a Wiener process (Brownian motion) with drift and infinitesimal var

Property Value
dbo:abstract
  • In probability theory and statistics, a normal variance-mean mixture with mixing probability density is the continuous probability distribution of a random variable of the form where , and are real numbers, and random variables and are independent, is normally distributed with mean zero and variance one, and is continuously distributed on the positive half-axis with probability density function . The conditional distribution of given is thus a normal distribution with mean and variance . A normal variance-mean mixture can be thought of as the distribution of a certain quantity in an inhomogeneous population consisting of many different normal distributed subpopulations. It is the distribution of the position of a Wiener process (Brownian motion) with drift and infinitesimal variance observed at a random time point independent of the Wiener process and with probability density function . An important example of normal variance-mean mixtures is the generalised hyperbolic distribution in which the mixing distribution is the generalized inverse Gaussian distribution. The probability density function of a normal variance-mean mixture with mixing probability density is and its moment generating function is where is the moment generating function of the probability distribution with density function , i.e. (en)
  • В теории вероятности нормальная смесь дисперсии-среднего со смешивающей плотностью это непрерывное вероятностное распределение случайной величины вида: где и — действительные числа и . Случайные величины и независимы, и — непрерывное вероятностное распределение на положительной полуоси с плотностью вероятности . (ru)
dbo:wikiPageID
  • 6526281 (xsd:integer)
dbo:wikiPageLength
  • 2594 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1036977169 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdf:type
rdfs:comment
  • В теории вероятности нормальная смесь дисперсии-среднего со смешивающей плотностью это непрерывное вероятностное распределение случайной величины вида: где и — действительные числа и . Случайные величины и независимы, и — непрерывное вероятностное распределение на положительной полуоси с плотностью вероятности . (ru)
  • In probability theory and statistics, a normal variance-mean mixture with mixing probability density is the continuous probability distribution of a random variable of the form where , and are real numbers, and random variables and are independent, is normally distributed with mean zero and variance one, and is continuously distributed on the positive half-axis with probability density function . The conditional distribution of given is thus a normal distribution with mean and variance . A normal variance-mean mixture can be thought of as the distribution of a certain quantity in an inhomogeneous population consisting of many different normal distributed subpopulations. It is the distribution of the position of a Wiener process (Brownian motion) with drift and infinitesimal var (en)
rdfs:label
  • Normal variance-mean mixture (en)
  • Нормальная смесь дисперсии-среднего (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License