An Entity of Type: written work, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Negative-bias temperature instability (NBTI) is a key reliability issue in MOSFETs, a type of transistor aging. NBTI manifests as an increase in the threshold voltage and consequent decrease in drain current and transconductance of a MOSFET. The degradation is often approximated by a power-law dependence on time. It is of immediate concern in p-channel MOS devices (pMOS), since they almost always operate with negative gate-to-source voltage; however, the very same mechanism also affects nMOS transistors when biased in the accumulation regime, i.e. with a negative bias applied to the gate.

Property Value
dbo:abstract
  • Negative-bias temperature instability (NBTI) is a key reliability issue in MOSFETs, a type of transistor aging. NBTI manifests as an increase in the threshold voltage and consequent decrease in drain current and transconductance of a MOSFET. The degradation is often approximated by a power-law dependence on time. It is of immediate concern in p-channel MOS devices (pMOS), since they almost always operate with negative gate-to-source voltage; however, the very same mechanism also affects nMOS transistors when biased in the accumulation regime, i.e. with a negative bias applied to the gate. More specifically, over time positive charges become trapped at the oxide-semiconductor boundary underneath the gate of a MOSFET. These positive charges partially cancel the negative gate voltage without contributing to conduction through the channel as electron holes in the semiconductor are supposed to. When the gate voltage is removed, the trapped charges dissipate over a time scale of milliseconds to hours. The problem has become more acute as transistors have shrunk, as there is less averaging of the effect over a large gate area. Thus, different transistors experience different amounts of NBTI, defeating standard circuit design techniques for tolerating manufacturing variability which depend on the close matching of adjacent transistors. NBTI has become significant for portable electronics because it interacts badly with two common power-saving techniques: reduced operating voltages and clock gating. With lower operating voltages, the NBTI-induced threshold voltage change is a larger fraction of the logic voltage and disrupts operations. When a clock is gated off, transistors stop switching and NBTI effects accumulate much more rapidly. When the clock is re-enabled, the transistor thresholds have changed and the circuit may not operate. Some low-power designs switch to a low-frequency clock rather than stopping completely in order to mitigate NBTI effects. (en)
  • NBTI(えぬびーてぃーあい)とは、(英語: Negative Bias Temperature Instability : 負バイアス温度不安定性)の略で、P型半導体(PMOS)の劣化メカニズムのひとつ。古くはスロートラップ現象と呼ばれていた。1990年代はじめに観測された現象で、加工プロセスの微細化に伴い顕在化している。 (ja)
  • 负偏置温度不稳定性(英語:Negative-bias temperature instability, NBTI)是影响金屬氧化物半導體場效電晶體可靠性的一个重要问题,它主要表现为阈值电压的偏移。也被列入半導體元件中,可靠度分析的重要指標。NBTI 效應是CMOS電路中PMOS在Gate給相對負偏壓作用下出現的一種退化現象。包含了(IG變大,Vth向負向移動swing變差,電導(Gm)和漏電(Id)變小。而隨著元件尺寸的變小,NBTI所帶來元件特性的漂移會造成產品失效。甚至在電路表現中,PMOS所帶來NBTI的效應會比NMOS HCI熱載子注入失效還要嚴重,影響電路的壽命。 * NBTI的原理 半導體元件中,Si和SiO2的介面鍵結強度是造成NBTI好壞的主因,而Si-H鍵的不穩定,在元件操作中無論在高溫或是高電流密度下造成Si-H鍵結的斷裂,使的H元素游離,進而造成閘級電壓的漂移。NBTI效應的產生過程主要涉及正电荷的產生和钝化,即介面的陷阱電荷(dangling bond)和氧化層固定正電荷(fixed charge in oxide layer)的產生以及過產生以及擴散物質過程 (氫氣和水汽是引起NBTI的兩種主要物質) * NBTI效應的影響 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7048926 (xsd:integer)
dbo:wikiPageLength
  • 5752 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1040328043 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • NBTI(えぬびーてぃーあい)とは、(英語: Negative Bias Temperature Instability : 負バイアス温度不安定性)の略で、P型半導体(PMOS)の劣化メカニズムのひとつ。古くはスロートラップ現象と呼ばれていた。1990年代はじめに観測された現象で、加工プロセスの微細化に伴い顕在化している。 (ja)
  • 负偏置温度不稳定性(英語:Negative-bias temperature instability, NBTI)是影响金屬氧化物半導體場效電晶體可靠性的一个重要问题,它主要表现为阈值电压的偏移。也被列入半導體元件中,可靠度分析的重要指標。NBTI 效應是CMOS電路中PMOS在Gate給相對負偏壓作用下出現的一種退化現象。包含了(IG變大,Vth向負向移動swing變差,電導(Gm)和漏電(Id)變小。而隨著元件尺寸的變小,NBTI所帶來元件特性的漂移會造成產品失效。甚至在電路表現中,PMOS所帶來NBTI的效應會比NMOS HCI熱載子注入失效還要嚴重,影響電路的壽命。 * NBTI的原理 半導體元件中,Si和SiO2的介面鍵結強度是造成NBTI好壞的主因,而Si-H鍵的不穩定,在元件操作中無論在高溫或是高電流密度下造成Si-H鍵結的斷裂,使的H元素游離,進而造成閘級電壓的漂移。NBTI效應的產生過程主要涉及正电荷的產生和钝化,即介面的陷阱電荷(dangling bond)和氧化層固定正電荷(fixed charge in oxide layer)的產生以及過產生以及擴散物質過程 (氫氣和水汽是引起NBTI的兩種主要物質) * NBTI效應的影響 (zh)
  • Negative-bias temperature instability (NBTI) is a key reliability issue in MOSFETs, a type of transistor aging. NBTI manifests as an increase in the threshold voltage and consequent decrease in drain current and transconductance of a MOSFET. The degradation is often approximated by a power-law dependence on time. It is of immediate concern in p-channel MOS devices (pMOS), since they almost always operate with negative gate-to-source voltage; however, the very same mechanism also affects nMOS transistors when biased in the accumulation regime, i.e. with a negative bias applied to the gate. (en)
rdfs:label
  • Negative-bias temperature instability (en)
  • NBTI (ja)
  • 负偏置温度不稳定性 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License