An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Multilinear subspace learning is an approach to dimensionality reduction. Dimensionality reduction can be performed on a data tensor whose observations have been vectorized and organized into a data tensor, or whose observations are matrices that are concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor images (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D).

Property Value
dbo:abstract
  • Multilinear subspace learning is an approach to dimensionality reduction. Dimensionality reduction can be performed on a data tensor whose observations have been vectorized and organized into a data tensor, or whose observations are matrices that are concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor images (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D). The mapping from a high-dimensional vector space to a set of lower dimensional vector spaces is a multilinear projection. When observations are retained in the same organizational structure as the sensor provides them; as matrices or higher order tensors, their representations are computed by performing N multiple linear projections. Multilinear subspace learning algorithms are higher-order generalizations of linear subspace learning methods such as principal component analysis (PCA), independent component analysis (ICA), linear discriminant analysis (LDA) and canonical correlation analysis (CCA). (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 30909817 (xsd:integer)
dbo:wikiPageLength
  • 17359 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1005594408 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Multilinear subspace learning is an approach to dimensionality reduction. Dimensionality reduction can be performed on a data tensor whose observations have been vectorized and organized into a data tensor, or whose observations are matrices that are concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor images (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D). (en)
rdfs:label
  • Multilinear subspace learning (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License