An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computational statistics, the Metropolis-adjusted Langevin algorithm (MALA) or Langevin Monte Carlo (LMC) is a Markov chain Monte Carlo (MCMC) method for obtaining random samples – sequences of random observations – from a probability distribution for which direct sampling is difficult. As the name suggests, MALA uses a combination of two mechanisms to generate the states of a random walk that has the target probability distribution as an invariant measure:

Property Value
dbo:abstract
  • In computational statistics, the Metropolis-adjusted Langevin algorithm (MALA) or Langevin Monte Carlo (LMC) is a Markov chain Monte Carlo (MCMC) method for obtaining random samples – sequences of random observations – from a probability distribution for which direct sampling is difficult. As the name suggests, MALA uses a combination of two mechanisms to generate the states of a random walk that has the target probability distribution as an invariant measure: * new states are proposed using (overdamped) Langevin dynamics, which use evaluations of the gradient of the target probability density function; * these proposals are accepted or rejected using the Metropolis–Hastings algorithm, which uses evaluations of the target probability density (but not its gradient). Informally, the Langevin dynamics drive the random walk towards regions of high probability in the manner of a gradient flow, while the Metropolis–Hastings accept/reject mechanism improves the mixing and convergence properties of this random walk. MALA was originally proposed by Julian Besag in 1994, (although the method was already introduced in 1978 ) and its properties were examined in detail by Gareth Roberts together with Richard Tweedie and Jeff Rosenthal. Many variations and refinements have been introduced since then, e.g. the manifold variant of Girolami and Calderhead (2011). The method is equivalent to using the Hamiltonian Monte Carlo (hybrid Monte Carlo) algorithm with only a single discrete time step. (en)
dbo:wikiPageID
  • 49312612 (xsd:integer)
dbo:wikiPageLength
  • 7883 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1074347589 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In computational statistics, the Metropolis-adjusted Langevin algorithm (MALA) or Langevin Monte Carlo (LMC) is a Markov chain Monte Carlo (MCMC) method for obtaining random samples – sequences of random observations – from a probability distribution for which direct sampling is difficult. As the name suggests, MALA uses a combination of two mechanisms to generate the states of a random walk that has the target probability distribution as an invariant measure: (en)
rdfs:label
  • Metropolis-adjusted Langevin algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License