An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a Lefschetz manifold is a particular kind of symplectic manifold , sharing a certain cohomological property with Kähler manifolds, that of satisfying the conclusion of the Hard Lefschetz theorem. More precisely, the strong Lefschetz property asks that for , the cup product be an isomorphism. The topology of these symplectic manifolds is severely constrained, for example their odd Betti numbers are even. This remark leads to numerous examples of symplectic manifolds which are not Kähler, the first historical example is due to William Thurston.

Property Value
dbo:abstract
  • In mathematics, a Lefschetz manifold is a particular kind of symplectic manifold , sharing a certain cohomological property with Kähler manifolds, that of satisfying the conclusion of the Hard Lefschetz theorem. More precisely, the strong Lefschetz property asks that for , the cup product be an isomorphism. The topology of these symplectic manifolds is severely constrained, for example their odd Betti numbers are even. This remark leads to numerous examples of symplectic manifolds which are not Kähler, the first historical example is due to William Thurston. (en)
  • 심플렉틱 위상수학에서 렙셰츠 다양체(Лефшец多樣體, 영어: Lefschetz manifold)는 심플렉틱 형식의 고차 거듭제곱에 대한 합곱이 서로 다른 차수의 실수 계수 코호몰로지의 동형을 유도하는 심플렉틱 다양체이다. 콤팩트 켈러 다양체의 일반화이다. (ko)
dbo:wikiPageID
  • 4291871 (xsd:integer)
dbo:wikiPageLength
  • 4890 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1112795575 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, a Lefschetz manifold is a particular kind of symplectic manifold , sharing a certain cohomological property with Kähler manifolds, that of satisfying the conclusion of the Hard Lefschetz theorem. More precisely, the strong Lefschetz property asks that for , the cup product be an isomorphism. The topology of these symplectic manifolds is severely constrained, for example their odd Betti numbers are even. This remark leads to numerous examples of symplectic manifolds which are not Kähler, the first historical example is due to William Thurston. (en)
  • 심플렉틱 위상수학에서 렙셰츠 다양체(Лефшец多樣體, 영어: Lefschetz manifold)는 심플렉틱 형식의 고차 거듭제곱에 대한 합곱이 서로 다른 차수의 실수 계수 코호몰로지의 동형을 유도하는 심플렉틱 다양체이다. 콤팩트 켈러 다양체의 일반화이다. (ko)
rdfs:label
  • Lefschetz manifold (en)
  • 렙셰츠 다양체 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License