About: Jack function

An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials.

Property Value
dbo:abstract
  • In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials. (en)
  • В математике, функции Джека получаются как проективный предел многочленов Джека, введённых . Многочлен Джека это однородный, симметрический многочлен который обобщает многочлены Шура и , и, в свою очередь, обобщён и . (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 8665621 (xsd:integer)
dbo:wikiPageLength
  • 9142 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1020834071 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials. (en)
  • В математике, функции Джека получаются как проективный предел многочленов Джека, введённых . Многочлен Джека это однородный, симметрический многочлен который обобщает многочлены Шура и , и, в свою очередь, обобщён и . (ru)
rdfs:label
  • Jack function (en)
  • Функции Джека (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License