Iterative Viterbi decoding is an algorithm that spots the subsequence S of an observation O = {o1, ..., on} having the highest average probability (i.e., probability scaled by the length of S) of being generated by a given hidden Markov model M with m states. The algorithm uses a modified Viterbi algorithm as an internal step. The scaled probability measure was first proposed by . An early algorithm to solve this problem, sliding window, was proposed by et al., 1989, with constant cost T = mn2/2.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type |
|
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |