In statistics, the graphical lasso is a sparse penalized maximum likelihood estimator for the concentration or precision matrix (inverse of covariance matrix) of a multivariate elliptical distribution. The original variant was formulated to solve Dempster's covariance selection problem for the multivariate Gaussian distribution when observations were limited. Subsequently, the optimization algorithms to solve this problem were improved and extended to other types of estimators and distributions.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is foaf:primaryTopic of |