dbo:abstract
|
- In mathematics, the Golod–Shafarevich theorem was proved in 1964 by Evgeny Golod and Igor Shafarevich. It is a result in non-commutative homological algebra which solves the class field tower problem, by showing that class field towers can be infinite. (en)
- En mathématiques, le théorème de Golod–Chafarevitch (ou Golod-Shafarevic), énoncé et prouvé en 1964 par Evgeny Golod et Igor Chafarevitch, est un théorème de théorie combinatoire des groupes. Il a permis en particulier de construire des contre-exemples à des conjectures tant de théorie des groupes que de théorie des nombres. (fr)
- Теорема Голода-Шафаревича — теорема алгебры. Была сформулирована и доказана Е. С. Голодом и И. Р. Шафаревичем в 1964 г. Важными следствиями из неё являются отрицательный ответ на проблему Куроша (существует ниль-алгебра, не являющаяся локально нильпотентной), отрицательный ответ на общую проблему Бернсайда (существует периодическая группа, не являющаяся локально конечной). (ru)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5501 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the Golod–Shafarevich theorem was proved in 1964 by Evgeny Golod and Igor Shafarevich. It is a result in non-commutative homological algebra which solves the class field tower problem, by showing that class field towers can be infinite. (en)
- En mathématiques, le théorème de Golod–Chafarevitch (ou Golod-Shafarevic), énoncé et prouvé en 1964 par Evgeny Golod et Igor Chafarevitch, est un théorème de théorie combinatoire des groupes. Il a permis en particulier de construire des contre-exemples à des conjectures tant de théorie des groupes que de théorie des nombres. (fr)
- Теорема Голода-Шафаревича — теорема алгебры. Была сформулирована и доказана Е. С. Голодом и И. Р. Шафаревичем в 1964 г. Важными следствиями из неё являются отрицательный ответ на проблему Куроша (существует ниль-алгебра, не являющаяся локально нильпотентной), отрицательный ответ на общую проблему Бернсайда (существует периодическая группа, не являющаяся локально конечной). (ru)
|
rdfs:label
|
- Golod–Shafarevich theorem (en)
- Théorème de Golod-Chafarevitch (fr)
- Теорема Голода — Шафаревича (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |