dbo:abstract
|
- In mathematics, the genus is a classification of quadratic forms and lattices over the ring of integers. An integral quadratic form is a quadratic form on Zn, or equivalently a free Z-module of finite rank. Two such forms are in the same genus if they are equivalent over the local rings Zp for each prime p and also equivalent over R. Equivalent forms are in the same genus, but the converse does not hold. For example, x2 + 82y2 and 2x2 + 41y2 are in the same genus but not equivalent over Z. Forms in the same genus have equal discriminant and hence there are only finitely many equivalence classes in a genus. The Smith–Minkowski–Siegel mass formula gives the weight or mass of the quadratic forms in a genus, the count of equivalence classes weighted by the reciprocals of the orders of their automorphism groups. (en)
- 이차 형식 이론에서, 종수(種數, 영어: genus)는 대역체의 대수적 정수환 계수의 이차 형식 위에 정의되는 동치 관계이다. 이는 이차 형식의 동치보다 더 엉성하다. (ko)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1939 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- 이차 형식 이론에서, 종수(種數, 영어: genus)는 대역체의 대수적 정수환 계수의 이차 형식 위에 정의되는 동치 관계이다. 이는 이차 형식의 동치보다 더 엉성하다. (ko)
- In mathematics, the genus is a classification of quadratic forms and lattices over the ring of integers. An integral quadratic form is a quadratic form on Zn, or equivalently a free Z-module of finite rank. Two such forms are in the same genus if they are equivalent over the local rings Zp for each prime p and also equivalent over R. The Smith–Minkowski–Siegel mass formula gives the weight or mass of the quadratic forms in a genus, the count of equivalence classes weighted by the reciprocals of the orders of their automorphism groups. (en)
|
rdfs:label
|
- Genus of a quadratic form (en)
- 이차 형식 종수 (ko)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |