An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In numerical analysis and scientific computing, the Gauss–Legendre methods are a family of numerical methods for ordinary differential equations. Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. All Gauss–Legendre methods are A-stable. The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is: The Gauss–Legendre method of order four has Butcher tableau:

Property Value
dbo:abstract
  • في التحليل العددي والحوسبة العلمية تعتبر أساليب غاوس-ليجندر واحدة من أساليب لحل المعادلات التفاضلية العادية. حيث تعتبر طرق غاوس-ليجندر من أساليب رونج-كوتا الضمنية. وبشكل أكثر تحديدا فهي إحدى طرق التجميع على أساس نقاط غاوس-ليجيندر التربيع. (ar)
  • In numerical analysis and scientific computing, the Gauss–Legendre methods are a family of numerical methods for ordinary differential equations. Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. All Gauss–Legendre methods are A-stable. The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is: The Gauss–Legendre method of order four has Butcher tableau: The Gauss–Legendre method of order six has Butcher tableau: The computational cost of higher-order Gauss–Legendre methods is usually excessive, and thus, they are rarely used. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 35195129 (xsd:integer)
dbo:wikiPageLength
  • 8223 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1093953505 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • في التحليل العددي والحوسبة العلمية تعتبر أساليب غاوس-ليجندر واحدة من أساليب لحل المعادلات التفاضلية العادية. حيث تعتبر طرق غاوس-ليجندر من أساليب رونج-كوتا الضمنية. وبشكل أكثر تحديدا فهي إحدى طرق التجميع على أساس نقاط غاوس-ليجيندر التربيع. (ar)
  • In numerical analysis and scientific computing, the Gauss–Legendre methods are a family of numerical methods for ordinary differential equations. Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. All Gauss–Legendre methods are A-stable. The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is: The Gauss–Legendre method of order four has Butcher tableau: (en)
rdfs:label
  • طرق غاوس-ليجندر (ar)
  • Gauss–Legendre method (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License