dbo:abstract
|
- In mathematics, given a group G, a G-module is an abelian group M on which G acts compatibly with the abelian group structure on M. This widely applicable notion generalizes that of a representation of G. Group (co)homology provides an important set of tools for studying general G-modules. The term G-module is also used for the more general notion of an R-module on which G acts linearly (i.e. as a group of R-module automorphisms). (en)
- 数学において、与えられた群 G 上の加群(かぐん、英: module over G)または G-加群 (G-module) とは、アーベル群 M であって M の群構造と両立する G の作用を持つものをいう。これは G の表現に広く一般に用いることのできる概念である。群コホモロジーは G-加群の一般論の研究において重要な道具をいくつも提供する。 G-加群という用語はもっといっぱんに、G が線型に(つまり R-加群の自己同型からなる群として)作用する R-加群に対しても用いられる。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5322 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, given a group G, a G-module is an abelian group M on which G acts compatibly with the abelian group structure on M. This widely applicable notion generalizes that of a representation of G. Group (co)homology provides an important set of tools for studying general G-modules. The term G-module is also used for the more general notion of an R-module on which G acts linearly (i.e. as a group of R-module automorphisms). (en)
- 数学において、与えられた群 G 上の加群(かぐん、英: module over G)または G-加群 (G-module) とは、アーベル群 M であって M の群構造と両立する G の作用を持つものをいう。これは G の表現に広く一般に用いることのできる概念である。群コホモロジーは G-加群の一般論の研究において重要な道具をいくつも提供する。 G-加群という用語はもっといっぱんに、G が線型に(つまり R-加群の自己同型からなる群として)作用する R-加群に対しても用いられる。 (ja)
|
rdfs:label
|
- G-module (en)
- 군의 가군 (ko)
- 群上の加群 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |