An Entity of Type: Part113809207, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules.Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence (such as NADH, tryptophan or endogenous chlorophyll, phycoerythrin or green fluorescent protein). Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to

Property Value
dbo:abstract
  • Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules.Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence (such as NADH, tryptophan or endogenous chlorophyll, phycoerythrin or green fluorescent protein). Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies. (en)
  • Флуоресценція знайшла широке застосування у різноманітних прикладних біологічних та біомедичних дослідженнях. Це фізичне явище, суть якого полягає в короткочасному поглинанні кванта світла флуорофором (речовиною, що здатна флуоресціювати) із наступною швидкою емісією іншого кванту, що має властивості, відмінні від вихідного. Багато напрямків у біофізиці, молекулярній та клітинній біології виникли та розвиваються саме завдяки впровадженню нових методів, що базуються на флуоресценції. Варто навести декілька прикладів. Для біофізиків флуоресценція стала швидким та чутливим методом дослідження структури, динаміки та функцій біологічних макромолекул — нуклеїнових кислот та білків. Метод секвенування ДНК за Сангером був значно вдосконалений у другій половині 1980-х років саме завдяки впровадженню флуоресцентної детекції. Важливим наслідком цього стала вища швидкість та надійність секвенування. Окрім цього метод було автоматизовано. Це відкрило технічну можливість проведення широкомасштабного (за масштабами того часу) секвенування та дозволило розпочати проєкт «Геном людини» на початку 1990-х років. Крім прямого секвенсування (методом Сангера), флуоресценція продовжує використовуватись у методах секвенування ДНК наступних поколінь (англ. Next generation sequencing). Флуоресценція дала новий поштовх для розвитку клітинної біології. Завдяки конфокальній флуоресцентній мікроскопії та розробці нових флуоресцентних міток на базі зеленого флуоресцентного білка (GFP) та його аналогів з'явилась можливість отримувати специфічні контрастні забарвлення та робити фотознімки з високим розділенням багатьох внутрішньоклітинних білкових структур. Розробка нових флуоресцентних зондів — речовин що змінюють флуоресценцію коли до них приєднується певна молекула — дала можливість детально досліджувати хімічний склад живих клітин та навіть організмів, а також його зміни у часі і просторі, що поклало початок флуоресцентній молекулярній візуалізації (англ. molecular imaging). Починаючи із середини XX-го століття, аналітичні методи, що базуються на використання явища флуоресценції, широко застосовуються у клінічній хімії та молекулярній діагностиці. Зокрема були розроблені та впроваджені чутливі методи для швидкого аналізу стероїдних гормонів, порфіринів, катехоламінів, метаболітів медичних препаратів та інших діагностично важливих хімічних речовин у сечі та плазмі крові. За допомогою імуноферментного аналізу (ELISA) із використанням флуорогенних субстратів проводять детекцію біомаркерів різних захворювань. Активно розроблюються методи флуоресцентної діагностики in vivo. Зокрема створені флуоресцентні зонди, що селективно забарвлюють злоякісні утворення та допомагають виявляти їх під час ендоскопічного обстеження або томографії. Також на основі флуоресцентного забарвлення тканин були розроблені новітні методики проведення хірургічних операцій для видалення злоякісних пухлин (англ.: image-guided surgery). Перед операцією ракова пухлина селективно забарвлюється флуоресцентним барвником. Під час самої операції спеціальне обладнання реєструє флуоресцентний сигнал, дозволяючи хірургу більш точно розрізняти злоякісну та здорову тканину. (uk)
  • Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором (веществом, способным флуоресцировать) с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров. Для биофизиков флуоресценция стала быстрым и чувствительным методом исследования структуры, динамики и функций биологических макромолекул — нуклеиновых кислот и белков. Метод секвенирования ДНК благодаря работам Сэнгера был значительно усовершенствован во второй половине 1980-х годов именно благодаря внедрению флуоресцентной детекции. Важным следствием этого стала высокая скорость и надёжность секвенирования. Кроме того, метод был автоматизирован. Это открыло техническую возможность проведения широкомасштабного (по масштабам того времени) секвенирования и позволило начать проект «Геном человека» в начале 1990-х годов. Хотя секвенирование по Сэнгеру почти полностью вышло из использования, флуоресценция продолжает использоваться в методах секвенирования ДНК следующих поколений. Флуоресценция дала новый толчок развитию клеточной биологии. Благодаря конфокальной флуоресцентной микроскопии и разработке новых флуоресцентных меток на базе зелёного флуоресцентного белка (ЗФБ) и его аналогов появилась возможность получать специфически контрастную окраску и делать фотоснимки с высоким разрешением многих внутриклеточных белковых структур. Разработка новых флуоресцентных зондов — веществ, изменяющих флуоресценцию, когда к ним присоединяется определённая молекула — дала возможность детально исследовать химический состав живых клеток и даже организмов, а также его изменение во времени и пространстве, что положило начало флуоресцентному молекулярному имиджингу (англ. molecular imaging) (ru)
dbo:thumbnail
dbo:wikiPageID
  • 23455526 (xsd:integer)
dbo:wikiPageLength
  • 27942 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120542600 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules.Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence (such as NADH, tryptophan or endogenous chlorophyll, phycoerythrin or green fluorescent protein). Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to (en)
  • Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором (веществом, способным флуоресцировать) с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров. (ru)
  • Флуоресценція знайшла широке застосування у різноманітних прикладних біологічних та біомедичних дослідженнях. Це фізичне явище, суть якого полягає в короткочасному поглинанні кванта світла флуорофором (речовиною, що здатна флуоресціювати) із наступною швидкою емісією іншого кванту, що має властивості, відмінні від вихідного. Багато напрямків у біофізиці, молекулярній та клітинній біології виникли та розвиваються саме завдяки впровадженню нових методів, що базуються на флуоресценції. Варто навести декілька прикладів. (uk)
rdfs:label
  • Fluorescence in the life sciences (en)
  • Флуоресценция в биологических исследованиях (ru)
  • Флуоресценція в біологічних дослідженнях (uk)
rdfs:seeAlso
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License