An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev.

Property Value
dbo:abstract
  • Der Alternantensatz in der Approximationstheorie gibt eine notwendige und hinreichende Bedingung für die beste Approximation einer stetigen Funktion durch Polynome. Er wird dem russischen Mathematiker Pafnuti Lwowitsch Tschebyschow zugeschrieben. (de)
  • In mathematics, the equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 32446743 (xsd:integer)
dbo:wikiPageLength
  • 3136 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1102462225 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • 2011-07-02 (xsd:date)
dbp:title
  • Notes on how to prove Chebyshev’s equioscillation theorem (en)
dbp:url
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Der Alternantensatz in der Approximationstheorie gibt eine notwendige und hinreichende Bedingung für die beste Approximation einer stetigen Funktion durch Polynome. Er wird dem russischen Mathematiker Pafnuti Lwowitsch Tschebyschow zugeschrieben. (de)
  • In mathematics, the equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev. (en)
rdfs:label
  • Alternantensatz (de)
  • Equioscillation theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License