In algebraic geometry, given a linear algebraic group G over a field k, a distribution on it is a linear functional satisfying some support condition. A convolution of distributions is again a distribution and thus they form the Hopf algebra on G, denoted by Dist(G), which contains the Lie algebra Lie(G) associated to G. Over a field of characteristic zero, Cartier's theorem says that Dist(G) is isomorphic to the universal enveloping algebra of the Lie algebra of G and thus the construction gives no new information. In the positive characteristic case, the algebra can be used as a substitute for the Lie group–Lie algebra correspondence and its variant for algebraic groups in the characteristic zero ; for example, this approach taken in.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:b |
|
dbp:p |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |