An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A disjunctive sequence is an infinite sequence (over a finite alphabet of characters) in which every finite string appears as a substring. For instance, the binary Champernowne sequence formed by concatenating all binary strings in shortlex order, clearly contains all the binary strings and so is disjunctive. (The spaces above are not significant and are present solely to make clear the boundaries between strings). The complexity function of a disjunctive sequence S over an alphabet of size k is pS(n) = kn. A disjunctive sequence is recurrent but never uniformly recurrent/almost periodic.

Property Value
dbo:abstract
  • A disjunctive sequence is an infinite sequence (over a finite alphabet of characters) in which every finite string appears as a substring. For instance, the binary Champernowne sequence formed by concatenating all binary strings in shortlex order, clearly contains all the binary strings and so is disjunctive. (The spaces above are not significant and are present solely to make clear the boundaries between strings). The complexity function of a disjunctive sequence S over an alphabet of size k is pS(n) = kn. Any normal sequence (a sequence in which each string of equal length appears with equal frequency) is disjunctive, but the converse is not true. For example, letting 0n denote the string of length n consisting of all 0s, consider the sequence obtained by splicing exponentially long strings of 0s into the shortlex ordering of all binary strings. Most of this sequence consists of long runs of 0s, and so it is not normal, but it is still disjunctive. A disjunctive sequence is recurrent but never uniformly recurrent/almost periodic. (en)
  • Un nombre univers est un nombre réel dans les décimales duquel on peut trouver n'importe quelle succession de chiffres de longueur finie, pour une base donnée. Ainsi, si l'on se donne une manière de coder les caractères d'un livre selon une suite de chiffres (ce qui est le cas, par exemple, dans tout format informatique), on trouvera dans un nombre univers tous les livres déjà écrits et à venir, y compris celui de l'histoire de votre vie passée et future. Mais on ne peut bien sûr pas en tirer une quelconque information : ce serait aussi efficace que de générer une succession aléatoire de lettres et de réessayer jusqu'à obtenir le livre que l'on cherche, et cela suppose de le connaître déjà lettre par lettre. (fr)
dbo:wikiPageID
  • 4251950 (xsd:integer)
dbo:wikiPageLength
  • 7912 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032027967 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • A disjunctive sequence is an infinite sequence (over a finite alphabet of characters) in which every finite string appears as a substring. For instance, the binary Champernowne sequence formed by concatenating all binary strings in shortlex order, clearly contains all the binary strings and so is disjunctive. (The spaces above are not significant and are present solely to make clear the boundaries between strings). The complexity function of a disjunctive sequence S over an alphabet of size k is pS(n) = kn. A disjunctive sequence is recurrent but never uniformly recurrent/almost periodic. (en)
  • Un nombre univers est un nombre réel dans les décimales duquel on peut trouver n'importe quelle succession de chiffres de longueur finie, pour une base donnée. Ainsi, si l'on se donne une manière de coder les caractères d'un livre selon une suite de chiffres (ce qui est le cas, par exemple, dans tout format informatique), on trouvera dans un nombre univers tous les livres déjà écrits et à venir, y compris celui de l'histoire de votre vie passée et future. (fr)
rdfs:label
  • Disjunctive sequence (en)
  • Nombre univers (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License