An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows: where S = 2 × area of reference triangle and in particular where is the Brocard angle. The law of cosines is used: . for values of where Furthermore the convention uses a shorthand notation for and Hence: Some important identities: Some useful trigonometric conversions:

Property Value
dbo:abstract
  • In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows: where S = 2 × area of reference triangle and in particular where is the Brocard angle. The law of cosines is used: . for values of where Furthermore the convention uses a shorthand notation for and Hence: Some important identities: where R is the circumradius and abc = 2SR and where r is the incenter, and Some useful trigonometric conversions: Some useful formulas: Some examples using Conway triangle notation: Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula: Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows: For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a Hence: This gives: (en)
  • Bij berekeningen in een driehoek ABC wordt vaak gebruikgemaakt van Conway-driehoeknotatie, geïntroduceerd door John Conway. Startend met S voor de dubbele oppervlakte van de driehoek schrijft hij .In het bijzonder * * * * waarin zoals gebruikelijk a, b en c voor de lengtes van de zijden staan. Bovendien staan A, B en C voor de hoeken van de driehoek, en voor de hoek van Brocard.Verder geldt de conventie . (nl)
dbo:wikiPageID
  • 15910144 (xsd:integer)
dbo:wikiPageLength
  • 5539 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 916094315 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Conway Triangle Notation (en)
dbp:urlname
  • ConwayTriangleNotation (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Bij berekeningen in een driehoek ABC wordt vaak gebruikgemaakt van Conway-driehoeknotatie, geïntroduceerd door John Conway. Startend met S voor de dubbele oppervlakte van de driehoek schrijft hij .In het bijzonder * * * * waarin zoals gebruikelijk a, b en c voor de lengtes van de zijden staan. Bovendien staan A, B en C voor de hoeken van de driehoek, en voor de hoek van Brocard.Verder geldt de conventie . (nl)
  • In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows: where S = 2 × area of reference triangle and in particular where is the Brocard angle. The law of cosines is used: . for values of where Furthermore the convention uses a shorthand notation for and Hence: Some important identities: Some useful trigonometric conversions: (en)
rdfs:label
  • Conway triangle notation (en)
  • Conway-driehoeknotatie (nl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License