An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory, comonotonicity mainly refers to the perfect positive dependence between the components of a random vector, essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity. Comonotonicity is also related to the comonotonic additivity of the Choquet integral. For extensions of comonotonicity, see and .

Property Value
dbo:abstract
  • In probability theory, comonotonicity mainly refers to the perfect positive dependence between the components of a random vector, essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity. Comonotonicity is also related to the comonotonic additivity of the Choquet integral. The concept of comonotonicity has applications in financial risk management and actuarial science, see e.g. and . In particular, the sum of the components X1 + X2 + · · · + Xn is the riskiest if the joint probability distribution of the random vector (X1, X2, . . . , Xn) is comonotonic. Furthermore, the α-quantile of the sum equals of the sum of the α-quantiles of its components, hence comonotonic random variables are quantile-additive. In practical risk management terms it means that there is minimal (or eventually no) variance reduction from diversification. For extensions of comonotonicity, see and . (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21621572 (xsd:integer)
dbo:wikiPageLength
  • 12203 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1021737624 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In probability theory, comonotonicity mainly refers to the perfect positive dependence between the components of a random vector, essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity. Comonotonicity is also related to the comonotonic additivity of the Choquet integral. For extensions of comonotonicity, see and . (en)
rdfs:label
  • Comonotonicity (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License