About: Coframe

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a coframe or coframe field on a smooth manifold is a system of one-forms or covectors which form a basis of the cotangent bundle at every point. In the exterior algebra of , one has a natural map from , given by . If is dimensional a coframe is given by a section of such that . The inverse image under of the complement of the zero section of forms a principal bundle over , which is called the coframe bundle.

Property Value
dbo:abstract
  • In mathematics, a coframe or coframe field on a smooth manifold is a system of one-forms or covectors which form a basis of the cotangent bundle at every point. In the exterior algebra of , one has a natural map from , given by . If is dimensional a coframe is given by a section of such that . The inverse image under of the complement of the zero section of forms a principal bundle over , which is called the coframe bundle. (en)
dbo:wikiPageID
  • 3131766 (xsd:integer)
dbo:wikiPageLength
  • 1448 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1082171243 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In mathematics, a coframe or coframe field on a smooth manifold is a system of one-forms or covectors which form a basis of the cotangent bundle at every point. In the exterior algebra of , one has a natural map from , given by . If is dimensional a coframe is given by a section of such that . The inverse image under of the complement of the zero section of forms a principal bundle over , which is called the coframe bundle. (en)
rdfs:label
  • Coframe (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License