An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical finite group theory, the classical involution theorem of Aschbacher classifies simple groups with a classical involution and satisfying some other conditions, showing that they are mostly groups of Lie type over a field of odd characteristic. extended the classical involution theorem to groups of finite Morley rank. A classical involution t of a finite group G is an involution whose centralizer has a subnormal subgroup containing t with quaternion Sylow 2-subgroups.

Property Value
dbo:abstract
  • In mathematical finite group theory, the classical involution theorem of Aschbacher classifies simple groups with a classical involution and satisfying some other conditions, showing that they are mostly groups of Lie type over a field of odd characteristic. extended the classical involution theorem to groups of finite Morley rank. A classical involution t of a finite group G is an involution whose centralizer has a subnormal subgroup containing t with quaternion Sylow 2-subgroups. (en)
  • Inom matematiken är klassiska involutionssatsen av Aschbacher ett resultat som klassificerar enkla grupper med en klassisk involution och som satisfierar vissa andra, som visar att de är mest över en kropp av udda karakteristik. ) utvidgade klassiska involutionssatsen till . En klassisk involution t av en ändlig grupp G är en involution vars centraliserare har en subnormal delgrupp som innehåller t med kvartenion-Sylow 2-delgrupper. (sv)
dbo:wikiPageID
  • 29949380 (xsd:integer)
dbo:wikiPageLength
  • 2113 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092689385 (xsd:integer)
dbo:wikiPageWikiLink
dbp:last
  • Aschbacher (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1977 (xsd:integer)
  • 1980 (xsd:integer)
dcterms:subject
rdf:type
rdfs:comment
  • In mathematical finite group theory, the classical involution theorem of Aschbacher classifies simple groups with a classical involution and satisfying some other conditions, showing that they are mostly groups of Lie type over a field of odd characteristic. extended the classical involution theorem to groups of finite Morley rank. A classical involution t of a finite group G is an involution whose centralizer has a subnormal subgroup containing t with quaternion Sylow 2-subgroups. (en)
  • Inom matematiken är klassiska involutionssatsen av Aschbacher ett resultat som klassificerar enkla grupper med en klassisk involution och som satisfierar vissa andra, som visar att de är mest över en kropp av udda karakteristik. ) utvidgade klassiska involutionssatsen till . En klassisk involution t av en ändlig grupp G är en involution vars centraliserare har en subnormal delgrupp som innehåller t med kvartenion-Sylow 2-delgrupper. (sv)
rdfs:label
  • Classical involution theorem (en)
  • Klassiska involutionssatsen (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License