An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

unknown

Property Value
dbo:description
  • mathematischer Satz (de)
  • teorema matemàtic (ca)
  • théorème de géométrie (fr)
  • konvex burokra vonatkozó matematikai tétel (hu)
  • matematični izrek o konveksnih lupinah (sl)
  • theorem on convex hulls (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageWikiLink
dbp:mathStatement
  • If , then is the nonnegative sum of at most points of . If , then is the convex sum of at most points of . (en)
  • If then , exists such that , and at most of them are nonzero. (en)
dbp:name
  • Lemma (en)
  • Carathéodory's theorem (en)
dbp:proof
  • This is trivial when . If we can prove it for all , then by induction we have proved it for all . Thus it remains to prove it for . This we prove by induction on . Base case: , trivial. Induction case. Represent . If some , then the proof is finished. So assume all If is linearly dependent, then we can use induction on its linear span to eliminate one nonzero term in , and thus eliminate it in as well. Else, there exists , such that . Then we can interpolate a full interval of representations: If for all , then set . Otherwise, let be the smallest such that one of . Then we obtain a convex representation of with nonzero terms. (en)
  • For any , represent for some , then , and we use the lemma. The second part reduces to the first part by "lifting up one dimension", a common trick used to reduce affine geometry to linear algebra, and reduce convex bodies to convex cones. Explicitly, let , then identify with the subset . This induces an embedding of into . Any , by first part, has a "lifted" representation where at most of are nonzero. That is, , and , which completes the proof. (en)
dbp:title
  • Proof of lemma (en)
  • Proof of Carathéodory's theorem (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Carathéodory's theorem (convex hull) (en)
  • Carathéodoryho věta (cs)
  • Théorème de Carathéodory (géométrie) (fr)
  • カラテオドリの定理 (凸包) (ja)
  • Теорема Каратеодорі про опуклу оболонку (uk)
  • Теорема Каратеодори о выпуклой оболочке (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International