dbo:abstract
|
- CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) is a next-generation sequencing based method used to quantify circulating DNA in cancer (ctDNA). The method was introduced in 2014 by Ash Alizadeh and Maximilian Diehn’s laboratories at Stanford, as a tool for measuring Cell-free tumor DNA which is released from dead tumor cells into the blood and thus may reflect the entire tumor genome. This method can be generalized for any cancer type that is known to have recurrent mutations. CAPP-Seq can detect one molecule of mutant DNA in 10,000 molecules of healthy DNA. The original method was further refined in 2016 for ultra sensitive detection through integration of multiple error suppression strategies, termed integrated Digital Error Suppression (iDES). The use of ctDNA in this technique should not be confused with circulating tumor cells (CTCs); these are two different entities. Originally described as a method to detect and monitor lung cancers, CAPP-Seq has been successfully adapted for a broad range of cancers by multiple independent groups. These include diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), post-transplant lymphoproliferative disorder (PTLD), metastatic colorectal cancer to ovary, esophageal cancer, pancreatic cancer, bladder cancer, leiomyosarcoma, diverse adult and pediatric sarcomas, among others. (en)
- CAPP-Seq — это чувствительный метод, используемый для количественного определения рака в молекулах ДНК. Этот метод применяется для обнаружения любого типа рака. CAPP-Seq разработан для того, чтобы снизить затраты секвенирования, ориентированные лишь на конкретные области генома.
* «Геном- полный набор генов, определяющих наш внешний вид и внутреннее строение,- упакован в 23 пары хромосом».(Мэтт Ридли «Геном»)
* «Секвенирование (sequencing) — это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК». (ru)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 22850 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:acronym
| |
dbp:inventors
|
- Diehn, Alizadeh, Newman, Bratman (en)
|
dbp:name
|
- Cancer Personalized Profiling by deep Sequencing (en)
|
dbp:notableExperiments
|
- CAPP-Seq was applied on non–small-cell lung cancer to identify recurrent somatic alterations from ctDNA. (en)
|
dbp:related
| |
dbp:uses
|
- Quantification of low level ctDNA from cancer patients. (en)
|
dbp:wikiPageUsesTemplate
| |
dbp:year
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- CAPP-Seq — это чувствительный метод, используемый для количественного определения рака в молекулах ДНК. Этот метод применяется для обнаружения любого типа рака. CAPP-Seq разработан для того, чтобы снизить затраты секвенирования, ориентированные лишь на конкретные области генома.
* «Геном- полный набор генов, определяющих наш внешний вид и внутреннее строение,- упакован в 23 пары хромосом».(Мэтт Ридли «Геном»)
* «Секвенирование (sequencing) — это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК». (ru)
- CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) is a next-generation sequencing based method used to quantify circulating DNA in cancer (ctDNA). The method was introduced in 2014 by Ash Alizadeh and Maximilian Diehn’s laboratories at Stanford, as a tool for measuring Cell-free tumor DNA which is released from dead tumor cells into the blood and thus may reflect the entire tumor genome. This method can be generalized for any cancer type that is known to have recurrent mutations. CAPP-Seq can detect one molecule of mutant DNA in 10,000 molecules of healthy DNA. The original method was further refined in 2016 for ultra sensitive detection through integration of multiple error suppression strategies, termed integrated Digital Error Suppression (iDES). The use of ctDNA in this techn (en)
|
rdfs:label
|
- CAPP-Seq (en)
- CAPP-Seq (CAncer Personalized Profiling by deep Sequencing) (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |