| dbo:abstract
|
- In mathematical finite group theory, the Brauer–Fowler theorem, proved by , states that if a group G has even order g > 2 then it has a proper subgroup of order greater than g1/3. The technique of the proof is to count involutions (elements of order 2) in G. Perhaps more important is another result that the authors derive from the same count of involutions, namely thatup to isomorphism there are only a finite number of finite simple groups with a given centralizer of an involution. This suggested that finite simple groups could be classified by studying their centralizers of involutions, and it led to the discovery of several sporadic groups. Later it motivated a part of the classification of finite simple groups. (en)
- Inom matematiken är Brauer–Fowlers sats, bevisad av ), ett resultat som säger att om en grupp G har jämn ordning g > 2n, har den en äkta delgrupp av ordning större än g1/3. Beviset går ut på att räkna involutioner (element av ordning 2) i G. Kanske ännu intressantare är ett resultat som författarna härleder med samma metod, nämligen att upptill isomorfi finns det bara ett ändligt antal enkla grupper med givet centrum av en involution. Detta föreslog att ändliga enkla grupper kunde klassificeras genom att studera deras centrum av involutioner, och ledde till upptäckten av flera . Senare var det en motivation för . (sv)
|
| dbo:wikiPageID
| |
| dbo:wikiPageLength
|
- 1304 (xsd:nonNegativeInteger)
|
| dbo:wikiPageRevisionID
| |
| dbo:wikiPageWikiLink
| |
| dbp:wikiPageUsesTemplate
| |
| dct:subject
| |
| rdf:type
| |
| rdfs:comment
|
- In mathematical finite group theory, the Brauer–Fowler theorem, proved by , states that if a group G has even order g > 2 then it has a proper subgroup of order greater than g1/3. The technique of the proof is to count involutions (elements of order 2) in G. Perhaps more important is another result that the authors derive from the same count of involutions, namely thatup to isomorphism there are only a finite number of finite simple groups with a given centralizer of an involution. This suggested that finite simple groups could be classified by studying their centralizers of involutions, and it led to the discovery of several sporadic groups. Later it motivated a part of the classification of finite simple groups. (en)
- Inom matematiken är Brauer–Fowlers sats, bevisad av ), ett resultat som säger att om en grupp G har jämn ordning g > 2n, har den en äkta delgrupp av ordning större än g1/3. Beviset går ut på att räkna involutioner (element av ordning 2) i G. Kanske ännu intressantare är ett resultat som författarna härleder med samma metod, nämligen att upptill isomorfi finns det bara ett ändligt antal enkla grupper med givet centrum av en involution. Detta föreslog att ändliga enkla grupper kunde klassificeras genom att studera deras centrum av involutioner, och ledde till upptäckten av flera . Senare var det en motivation för . (sv)
|
| rdfs:label
|
- Brauer–Fowler theorem (en)
- Brauer–Fowlers sats (sv)
|
| owl:sameAs
| |
| prov:wasDerivedFrom
| |
| foaf:isPrimaryTopicOf
| |
| is dbo:wikiPageRedirects
of | |
| is dbo:wikiPageWikiLink
of | |
| is foaf:primaryTopic
of | |