Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL (data warehouse), the main criteria is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge (reusing identifiers or ontologies) or the generation of a schema based on the source data.

Property Value
dbo:abstract
  • Knowledge Discovery in Databases (KDD), auf Deutsch Wissensentdeckung in Datenbanken, ergänzt das oft synonym gebrauchte Data-Mining um vorbereitende Untersuchungen und Transformationen der auszuwertenden Daten. Ziel des KDD ist die Erkennung bislang unbekannter fachlicher Zusammenhänge aus vorhandenen, meist großen Datenbeständen. In Abgrenzung zum Data-Mining umfasst KDD als Gesamtprozess auch die Vorbereitung der Daten sowie die Bewertung der Resultate. Der Begriff KDD wurde in wissenschaftlichen Kreisen von Gregory Piatetsky-Shapiro geprägt, während in der Praxis der Begriff Data-Mining geläufiger ist, der in der Statistik jedoch traditionell negativ besetzt ist. Die Teilschritte des KDD-Prozesses sind 1. * Bereitstellung von Hintergrundwissen für den jeweiligen Fachbereich 2. * Definition der Ziele der Wissensfindung 3. * Datenauswahl 4. * Datenbereinigung 5. * Datenreduktion (z. B. durch Transformationen) 6. * Auswahl eines Modells, in dem das gefundene Wissen repräsentiert werden soll 7. * Data-Mining, die eigentliche Datenanalyse 8. * Interpretation der gewonnenen Erkenntnisse Üblicherweise werden diese Schritte mehrfach durchlaufen. Ein verbreitetes Vorgehensmodell ist der Cross-Industry Standard Process for Data-Mining (CRISP-DM). (de)
  • L'extraction de connaissances est le processus de création de connaissances à partir d'informations structurées (bases de données relationnelles, XML) ou non structurées (textes, documents, images). Le résultat doit être dans un format lisible par les ordinateurs. Le groupe RDB2RDF W3C est en cours de standardisation d'un langage d'extraction de connaissances au format RDF à partir de bases de données. En français on parle d'« extraction de connaissances à partir des données » (ECD). (fr)
  • Extração de conhecimento (também conhecido como processo KDD, do inglês knowledge-discovery in databases) é um processo de extração de informações de base de dados, que cria relações de interesse que não são observadas pelo especialista no assunto, bem como auxilia a validação de conhecimento extraído. O crescimento rápido do volume das bases de dados em tamanho e dimensionalidade criou a necessidade e a oportunidade para extrair conhecimento destas. Neste contexto, surge no final da década de 1980, um novo ramo da computação, a extração de conhecimento, com o objetivo principal de encontrar uma maneira automatizada de explorar essas bases de dados e reconhecer os padrões existentes através da modelagem de fenômenos do mundo real. A extração de conhecimento refere-se às etapas que produzem conhecimentos a partir de dados relacionados, e sua principal característica é a extração não-trivial de informações implicitamente contidas em uma base de dados. Essas informações são de difícil detecção por métodos tradicionais de análise e devem ser potencialmente úteis para tomada de decisão. Enquanto os métodos tradicionais são capazes de tratar apenas as informações explícitas, a extração de conhecimento é capaz de detectar informações implícitas armazenadas nos bancos de dados. O processo é iterativo e, embora apresente uma definição semelhante também ao mineração de dados, deve ser composto de uma série de etapas seqüenciais, podendo haver retorno a etapas anteriores, isto é, as descobertas realizadas (ou a falta delas). Eventualmente, este processo conduz a novas hipóteses e descobertas. Neste caso, o usuário pode decidir pela retomada dos processos de mineração, ou uma nova seleção de atributos, por exemplo, para validar as hipóteses que surgiram ao longo do processo. O produto esperado da extração de conhecimento é uma informação relevante para ser utilizada pelos tomadores de decisão. Alguns autores, porém, defendem o ponto de vista de que o conhecimento descoberto não precisa necessariamente ser incorporado a um sistema de apoio à decisão (SAD). O campo de estudo é de interesse comum a diversas áreas, e as primeiras contribuições científicas e técnicas foram apresentadas por pesquisadores de áreas como: aprendizado de máquinas; banco de dados inteligente; computação de alto desempenho; estatística; inteligência artificial; visualização de dados; reconhecimento de padrões e sistemas especialistas. Foram desenvolvidas aplicações também para astronomia, biologia, seguros, marketing, medicina, entre outros. (pt)
  • Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL (data warehouse), the main criteria is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge (reusing identifiers or ontologies) or the generation of a schema based on the source data. The RDB2RDF W3C group is currently standardizing a language for extraction of RDF from relational databases. Another popular example for knowledge extraction is the transformation of Wikipedia into structured data and also the mapping to existing knowledge (see DBpedia and Freebase). (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 31002435 (xsd:integer)
dbo:wikiPageRevisionID
  • 744046166 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • L'extraction de connaissances est le processus de création de connaissances à partir d'informations structurées (bases de données relationnelles, XML) ou non structurées (textes, documents, images). Le résultat doit être dans un format lisible par les ordinateurs. Le groupe RDB2RDF W3C est en cours de standardisation d'un langage d'extraction de connaissances au format RDF à partir de bases de données. En français on parle d'« extraction de connaissances à partir des données » (ECD). (fr)
  • Knowledge Discovery in Databases (KDD), auf Deutsch Wissensentdeckung in Datenbanken, ergänzt das oft synonym gebrauchte Data-Mining um vorbereitende Untersuchungen und Transformationen der auszuwertenden Daten. Ziel des KDD ist die Erkennung bislang unbekannter fachlicher Zusammenhänge aus vorhandenen, meist großen Datenbeständen. In Abgrenzung zum Data-Mining umfasst KDD als Gesamtprozess auch die Vorbereitung der Daten sowie die Bewertung der Resultate. Der Begriff KDD wurde in wissenschaftlichen Kreisen von Gregory Piatetsky-Shapiro geprägt, während in der Praxis der Begriff Data-Mining geläufiger ist, der in der Statistik jedoch traditionell negativ besetzt ist. (de)
  • Extração de conhecimento (também conhecido como processo KDD, do inglês knowledge-discovery in databases) é um processo de extração de informações de base de dados, que cria relações de interesse que não são observadas pelo especialista no assunto, bem como auxilia a validação de conhecimento extraído. O produto esperado da extração de conhecimento é uma informação relevante para ser utilizada pelos tomadores de decisão. Alguns autores, porém, defendem o ponto de vista de que o conhecimento descoberto não precisa necessariamente ser incorporado a um sistema de apoio à decisão (SAD). (pt)
  • Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL (data warehouse), the main criteria is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge (reusing identifiers or ontologies) or the generation of a schema based on the source data. (en)
rdfs:label
  • Knowledge Discovery in Databases (de)
  • Extraction de connaissances (fr)
  • Extração de conhecimento (pt)
  • Knowledge extraction (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of