Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/class/yago/WikicatTheoremsInCombinatorics
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
rdfs:
subClassOf
yago
:Theorem106752293
owl:
equivalentClass
yago-res
:wikicat_Theorems_in_combinatorics
is
rdf:
type
of
dbr
:Mirsky's_theorem
dbr
:Myhill–Nerode_theorem
dbr
:Binomial_theorem
dbr
:De_Bruijn–Erdős_theorem_(incidence_geometry)
dbr
:Bertrand's_ballot_theorem
dbr
:Pentagonal_number_theorem
dbr
:Chomsky–Schützenberger_theorem
dbr
:Multinomial_theorem
dbr
:Corners_theorem
dbr
:Erdős–Fuchs_theorem
dbr
:Erdős–Rado_theorem
dbr
:Erdős–Szekeres_theorem
dbr
:Erdős–Szemerédi_theorem
dbr
:MacMahon_Master_theorem
dbr
:Hall's_marriage_theorem
dbr
:Pólya_enumeration_theorem
dbr
:Cayley's_formula
dbr
:Trinomial_expansion
dbr
:Lindström–Gessel–Viennot_lemma
dbr
:Mnev's_universality_theorem
dbr
:Vandermonde's_identity
dbr
:Erdős–Ko–Rado_theorem
dbr
:Baranyai's_theorem
dbr
:Beck's_theorem
dbr
:Dilworth's_theorem
dbr
:Folkman's_theorem
dbr
:Stanley's_reciprocity_theorem
dbr
:Szemerédi–Trotter_theorem
dbr
:Bondy's_theorem
dbr
:Pigeonhole_principle
dbr
:Sperner's_lemma
dbr
:Green–Tao_theorem
dbr
:Kneser's_theorem_(combinatorics)
dbr
:Bruck–Ryser–Chowla_theorem
dbr
:Cameron–Erdős_conjecture
dbr
:Kirchhoff's_theorem
dbr
:Szemerédi's_theorem
dbr
:Schur's_theorem
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License