An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions is described in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction.

Property Value
dbo:abstract
  • In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions is described in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction. Fibonacci actually lists several different methods for constructing Egyptian fraction representations . He includes the greedy method as a last resort for situations when several simpler methods fail; see Egyptian fraction for a more detailed listing of these methods. As Salzer (1948) details, the greedy method, and extensions of it for the approximation of irrational numbers, have been rediscovered several times by modern mathematicians, earliest and most notably by J. J. Sylvester; see for instance and . A closely related expansion method that produces closer approximations at each step by allowing some unit fractions in the sum to be negative dates back to . The expansion produced by this method for a number x is called the greedy Egyptian expansion, Sylvester expansion, or Fibonacci–Sylvester expansion of x. However, the term Fibonacci expansion usually refers, not to this method, but to representation of integers as sums of Fibonacci numbers. (en)
  • De Sylvester-expansie van een positieve breuk is de stijgende rij van positieve gehele getallen waarmee de breuk geschreven kan worden als Egyptische breuk zodanig dat steeds zo klein mogelijk is. Een Egyptische breuk is een som van stambreuken met natuurlijke getallen als noemers: Voor de Sylvester-expansie geldt nog: De expansie is genoemd naar de wiskundige James Joseph Sylvester, die ze in 1880 beschreef. (nl)
  • Жадный алгоритм для египетских дробей — жадный алгоритм, который преобразует рациональные числа в египетские дроби, на каждом шаге выбирая наибольшую из возможных аликвотных дробей, которая может быть использована в остаточной дроби. Разложение, полученное жадным алгоритмом для числа , называется жадным египетским разложением, разложением Сильвестра или разложением Фибоначчи — Сильвестра числа . (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7277012 (xsd:integer)
dbo:wikiPageLength
  • 15746 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1059591299 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • James Joseph Sylvester (en)
dbp:b
  • 1 (xsd:integer)
  • 2 (xsd:integer)
  • 3 (xsd:integer)
dbp:first
  • J. J. (en)
dbp:last
  • Sylvester (en)
dbp:p
  • 2 (xsd:integer)
dbp:wikiPageUsesTemplate
dbp:year
  • 1880 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • De Sylvester-expansie van een positieve breuk is de stijgende rij van positieve gehele getallen waarmee de breuk geschreven kan worden als Egyptische breuk zodanig dat steeds zo klein mogelijk is. Een Egyptische breuk is een som van stambreuken met natuurlijke getallen als noemers: Voor de Sylvester-expansie geldt nog: De expansie is genoemd naar de wiskundige James Joseph Sylvester, die ze in 1880 beschreef. (nl)
  • Жадный алгоритм для египетских дробей — жадный алгоритм, который преобразует рациональные числа в египетские дроби, на каждом шаге выбирая наибольшую из возможных аликвотных дробей, которая может быть использована в остаточной дроби. Разложение, полученное жадным алгоритмом для числа , называется жадным египетским разложением, разложением Сильвестра или разложением Фибоначчи — Сильвестра числа . (ru)
  • In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions is described in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction. (en)
rdfs:label
  • Greedy algorithm for Egyptian fractions (en)
  • Sylvester-expansie (nl)
  • Жадный алгоритм для египетских дробей (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License