An Entity of Type: Person100007846, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear response variable depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models. They can be interpreted as the discriminative generalization of the naive Bayes generative model.

Property Value
dbo:abstract
  • In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear response variable depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models. They can be interpreted as the discriminative generalization of the naive Bayes generative model. The model relates a univariate response variable, Y, to some predictor variables, xi. An exponential family distribution is specified for Y (for example normal, binomial or Poisson distributions) along with a link function g (for example the identity or log functions) relating the expected value of Y to the predictor variables via a structure such as The functions fi may be functions with a specified parametric form (for example a polynomial, or an un-penalized regression spline of a variable) or may be specified non-parametrically, or semi-parametrically, simply as 'smooth functions', to be estimated by non-parametric means. So a typical GAM might use a scatterplot smoothing function, such as a locally weighted mean, for f1(x1), and then use a factor model for f2(x2). This flexibility to allow non-parametric fits with relaxed assumptions on the actual relationship between response and predictor, provides the potential for better fits to data than purely parametric models, but arguably with some loss of interpretability. (en)
  • En statistiques, le modèle additif généralisé (en anglais, generalized additive model ou GAM) est un modèle statistique développé par Trevor Hastie et Rob Tibshirani pour fusionner les propriétés du modèle linéaire généralisé avec celles du . (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3608284 (xsd:integer)
dbo:wikiPageLength
  • 39206 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1111688289 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En statistiques, le modèle additif généralisé (en anglais, generalized additive model ou GAM) est un modèle statistique développé par Trevor Hastie et Rob Tibshirani pour fusionner les propriétés du modèle linéaire généralisé avec celles du . (fr)
  • In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear response variable depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models. They can be interpreted as the discriminative generalization of the naive Bayes generative model. (en)
rdfs:label
  • Modèle additif généralisé (fr)
  • Generalized additive model (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License