dbo:abstract
|
- En la , un tacnodo (también llamado punto de osculación o cúspide doble) es un tipo de punto singular de una curva. Se define como un punto donde dos (o más) circunferencias osculatrices a la curva en ese punto son tangentes entre sí. Esto significa que dos ramas de la curva tienen tangencia ordinaria en el punto doble. El ejemplo canónico es A partir de este ejemplo, se puede definir un tacnodo de una curva arbitraria, como un punto de auto-tangencia localmente difeomorfo al punto en el origen de esta curva. Otro ejemplo de tacnodo está dado por la que se muestra en la figura, con la ecuación (es)
- In geometria, si definisce tacnodo di una curva algebrica di ordine n un punto cuspidale della curva in cui la tangente nel punto assorbe in esso più di tre intersezioni. Il tacnodo si dirà reale o isolato a seconda che esistano due parabole osculatrici, alla curva nel punto, reali e distinte o immaginarie coniugate. (it)
- In classical algebraic geometry, a tacnode (also called a point of osculation or double cusp) is a kind of singular point of a curve. It is defined as a point where two (or more) osculating circles to the curve at that point are tangent. This means that two branches of the curve have ordinary tangency at the double point. The canonical example is A tacnode of an arbitrary curve may then be defined from this example, as a point of self-tangency locally diffeomorphic to the point at the origin of this curve. Another example of a tacnode is given by the shown in the figure, with equation (en)
- В точка самосоприкосновения (англ. tacnode) или двойной касп — вид особой точки. Определяется как точка, где две (или более) соприкасающиеся кривой окружности в этой точке касаются. Это означает, что две ветви кривой имеют одну и ту же касательную в двойной точке. Каноническим примером служит кривая Другой пример точки самоприкосновения — кривая, показанная на рисунке и имеющая уравнение (ru)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4192 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:title
| |
dbp:urlname
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In geometria, si definisce tacnodo di una curva algebrica di ordine n un punto cuspidale della curva in cui la tangente nel punto assorbe in esso più di tre intersezioni. Il tacnodo si dirà reale o isolato a seconda che esistano due parabole osculatrici, alla curva nel punto, reali e distinte o immaginarie coniugate. (it)
- In classical algebraic geometry, a tacnode (also called a point of osculation or double cusp) is a kind of singular point of a curve. It is defined as a point where two (or more) osculating circles to the curve at that point are tangent. This means that two branches of the curve have ordinary tangency at the double point. The canonical example is A tacnode of an arbitrary curve may then be defined from this example, as a point of self-tangency locally diffeomorphic to the point at the origin of this curve. Another example of a tacnode is given by the shown in the figure, with equation (en)
- В точка самосоприкосновения (англ. tacnode) или двойной касп — вид особой точки. Определяется как точка, где две (или более) соприкасающиеся кривой окружности в этой точке касаются. Это означает, что две ветви кривой имеют одну и ту же касательную в двойной точке. Каноническим примером служит кривая Другой пример точки самоприкосновения — кривая, показанная на рисунке и имеющая уравнение (ru)
- En la , un tacnodo (también llamado punto de osculación o cúspide doble) es un tipo de punto singular de una curva. Se define como un punto donde dos (o más) circunferencias osculatrices a la curva en ese punto son tangentes entre sí. Esto significa que dos ramas de la curva tienen tangencia ordinaria en el punto doble. El ejemplo canónico es (es)
|
rdfs:label
|
- Tacnodo (es)
- Tacnodo (it)
- Tacnode (en)
- Точка самоприкосновения (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |