An Entity of Type: Manifold103717750, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form ,

Property Value
dbo:abstract
  • In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.e., whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form , where R is the real line, is a (positive definite) metric and is a positive function on the Riemannian manifold S. In such a local coordinate representation the Killing field may be identified with and S, the manifold of -trajectories, may be regarded as the instantaneous 3-space of stationary observers. If is the square of the norm of the Killing vector field, , both and are independent of time (in fact ). It is from the latter fact that a static spacetime obtains its name, as the geometry of the space-like slice S does not change over time. (en)
  • In relatività generale, uno spaziotempo statico è uno spaziotempo stazionario per il quale è possibile individuare una famiglia di ipersuperfici spacelike che siano ortogonali alle orbite generate delle isometrie delle metrica (che esistono perché lo spaziotempo è stazionario). La stazionarietà è equivalente alla richiesta che per il vettore di Killing timelike che genera le isometria valga la relazione dove le parentesi quadre indicano l'antisimmetrizzazione sugli indici. (it)
dbo:wikiPageID
  • 1682143 (xsd:integer)
dbo:wikiPageLength
  • 3263 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1016066870 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In relatività generale, uno spaziotempo statico è uno spaziotempo stazionario per il quale è possibile individuare una famiglia di ipersuperfici spacelike che siano ortogonali alle orbite generate delle isometrie delle metrica (che esistono perché lo spaziotempo è stazionario). La stazionarietà è equivalente alla richiesta che per il vettore di Killing timelike che genera le isometria valga la relazione dove le parentesi quadre indicano l'antisimmetrizzazione sugli indici. (it)
  • In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form , (en)
rdfs:label
  • Spaziotempo statico (it)
  • Static spacetime (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License