dbo:abstract
|
- In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl. The adjective "lamellar" derives from the noun "lamella", which means a thin layer. The lamellae to which "lamellar vector field" refers are the surfaces of constant potential, or in the complex case, the surfaces orthogonal to the vector field. This language is particularly popular with authors in rational mechanics. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9504 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:1a
|
- Flanders (en)
- Wheeler (en)
- Lee (en)
- O'Neill (en)
- Aris (en)
- Thorne (en)
- Wald (en)
- Choquet-Bruhat (en)
- DeWitt-Morette (en)
- Dillard-Bleick (en)
- Misner (en)
- Panton (en)
|
dbp:1loc
|
- Appendix B.3 (en)
- Lemma 19.6 (en)
- Proposition 12.30 (en)
- Section IV.C.6 (en)
|
dbp:1p
|
- 64 (xsd:integer)
- 66 (xsd:integer)
- 72 (xsd:integer)
- 247 (xsd:integer)
- 358 (xsd:integer)
- 360 (xsd:integer)
- 434 (xsd:integer)
|
dbp:1pp
|
- 96 (xsd:integer)
- 123 (xsd:integer)
|
dbp:1y
|
- 1962 (xsd:integer)
- 1973 (xsd:integer)
- 1982 (xsd:integer)
- 1983 (xsd:integer)
- 1984 (xsd:integer)
- 1989 (xsd:integer)
- 2013 (xsd:integer)
|
dbp:2a
|
- Kramer (en)
- Stephani (en)
- Hoenselaers (en)
- MacCallum (en)
- Panton (en)
|
dbp:2loc
| |
dbp:2p
| |
dbp:2y
|
- 2003 (xsd:integer)
- 2013 (xsd:integer)
|
dbp:3a
| |
dbp:3loc
| |
dbp:3y
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl. (en)
|
rdfs:label
|
- Complex lamellar vector field (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |