An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this classically implies that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent. This is a useful feature in the ordering of cardinal numbers.

Property Value
dbo:abstract
  • El Teorema de Schröder-Bernstein (també conegut com a Teorema de Cantor-Bernstein o com a Teorema de Cantor-Schröder-Bernstein) afirma que: Si cadascun dels dos conjunts A i B són equivalents a un subconjunt de l'altre, aleshores A i B són equivalents. Aquest teorema és fonamental per a garantir l'ordre estricte dels Nombres cardinals.Segons sembla, va ser demostrat per Richard Dedekind el 1887, però no ho va publicar. El 1895, va ser enunciat per Georg Cantor a conseqüència de l'ordre lineal dels Nombres cardinals, però no el va demostrar. El 1896 Ernst Schröder va publicar una demostració que contenia un error, que va ser finalment subsanat, per un jove Felix Bernstein, fill d'un amic de Georg Cantor. Aquesta demostració de Bernstein, va ser publicada l'any següent per Émile Borel en el seu llibre sobre funcions. (ca)
  • Cantorova-Bernsteinova věta (také Cantorova-Schröderova-Bernsteinova věta) je matematické tvrzení z oblasti teorie množin, které má zásadní význam pro srovnávání nekonečných mohutností. (cs)
  • Der Satz von Cantor-Bernstein-Schröder oder kurz Äquivalenzsatz ist ein Satz der Mengenlehre über die Mächtigkeiten zweier Mengen. Er ist nach den Mathematikern Georg Cantor (der ihn als erster formuliert hat), Felix Bernstein sowie Ernst Schröder (die Beweise veröffentlichten) benannt und wird in der Literatur auch als Cantor-Bernstein-Schröderscher [Äquivalenz-]Satz, Satz von Cantor-Bernstein, Äquivalenzsatz von Cantor-Bernstein, Satz von Schröder-Bernstein oder ähnlich bezeichnet. Allerdings wurde er unabhängig auch von Richard Dedekind bewiesen. Der Satz besagt: Ist eine Menge A gleichmächtig zu einer Teilmenge einer zweiten Menge B und ist diese zweite Menge B gleichmächtig zu einer Teilmenge der ersten Menge A, so sind A und B gleichmächtig. Der Satz von Cantor-Bernstein-Schröder ist ein wichtiges Hilfsmittel beim Nachweis der Gleichmächtigkeit zweier Mengen. (de)
  • El teorema de Schröder y Bernstein establece un criterio para establecer si existe una función biyectiva entre dos conjuntos cualesquiera A y B: Para cualquier conjunto A y B, si existe una función inyectiva de A en B y existe una función inyectiva de B en A, entonces existe una correspondencia biunívoca entre B y A. Formalmente: El teorema puede parecer trivial para conjuntos finitos, pero el enunciado del teorema se cumple para conjuntos de cualquier cardinalidad. El teorema resulta útil en muchos casos para poder determinar si un conjunto tiene la misma cardinalidad que otro conjunto, ya que dos conjuntos tienen la misma cardinalidad justo cuando existe una correspondencia biunívoca entre ellos. (es)
  • Le théorème de Cantor-Bernstein, également appelé théorème de Cantor-Schröder-Bernstein, est le théorème de la théorie des ensembles qui affirme l’existence d'une bijection entre deux ensembles dès lors qu'il existe deux injections, l'une du second vers le premier l'autre du premier vers le second. Théorème — S'il existe une injection d'un ensemble E vers un ensemble F et une injection de F vers E, alors il existe une bijection de E sur F. Il est nommé ainsi en référence aux mathématiciens Georg Cantor, Felix Bernstein et Ernst Schröder. Cantor en donna une première démonstration, mais qui utilisait implicitement l'axiome du choix[réf. nécessaire]. Bernstein en donna une démonstration qui ne dépendait pas de cet axiome. Cependant, toutes les démonstrations données utilisent le principe du tiers exclu et de ce fait ne sont pas acceptées par les intuitionnistes. (fr)
  • In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this classically implies that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent. This is a useful feature in the ordering of cardinal numbers. The theorem is named after Felix Bernstein and Ernst Schröder. It is also known as Cantor–Bernstein theorem, or Cantor–Schröder–Bernstein, after Georg Cantor who first published it without proof. (en)
  • In matematica, il teorema di Cantor-Bernstein-Schröder, a cui spesso si fa riferimento semplicemente come teorema di Cantor-Bernstein, afferma che, dati due insiemi e , se esistono due funzioni iniettive e , allora esiste una funzione biiettiva . (it)
  • ベルンシュタインの定理(ベルンシュタインのていり、カントール=ベルンシュタイン=シュレーダーの定理、シュレーダー=ベルンシュタインの定理、カントール=ベルンシュタインの定理とも、英: Schröder–Bernstein theorem)とは、集合 A から集合 B に単射 があり、集合 B から集合 A へも単射があれば、集合 A から集合 B への全単射があるというものである。濃度においては、これは |A| ≤ |B| かつ |B| ≤ |A| ならば |A| = |B| である、ということを言っているわけで、非常に基本的な要請がこの定理によって満たされることになる。 (ja)
  • 집합론에서, 칸토어-번슈타인 정리(영어: Cantor-Bernstein theorem)는 두 집합 사이에 두 방향으로 단사 함수가 존재하면 그 사이에 일대일 대응이 존재한다는 정리이다. 이는 선택 공리에 의존하지 않고 증명할 수 있다. (ko)
  • Twierdzenie Cantora-Bernsteina-Schrödera – twierdzenie teorii mnogości głoszące, że jeśli zbiór jest równoliczny z pewnym podzbiorem zbioru oraz zbiór jest równoliczny z pewnym podzbiorem zbioru to zbiory i są równoliczne. Dla zbiorów napiszemy, że ilekroć zbiór jest równoliczny z pewnym podzbiorem zbioru Przy tych oznaczeniach możemy wyrazić twierdzenie Cantora-Bernsteina-Schrödera w następujący sposób symboliczny: Jeśli oraz to Formułując jeszcze inaczej, twierdzenie to wyraża słabą antysymetrię relacji porządku na liczbach kardynalnych: Jeśli oraz to (pl)
  • In de axiomatische verzamelingenleer doet de stelling van Cantor-Bernstein-Schröder een uitspraak over de gelijkmachtigheid van twee verzamelingen. De stelling zegt namelijk dat als er tussen twee verzamelingen zowel een injectieve afbeeldingen van de ene in de andere verzameling is en ook van de andere in de ene, er een bijectieve afbeelding is tussen de beide verzamelingen, en de verzamelingen dus gelijkmachtig zijn. De stelling is genoemd naar Georg Cantor, Felix Bernstein en Ernst Schröder' (nl)
  • Em teoria de conjuntos, o Teorema de Cantor-Bernstein-Schroeder, assim chamado em homenagem a Georg Cantor, Felix Bernstein e Ernst Schröder, estabelece que se existem funções injetivas f : A → B e g : B → A entre os conjuntos A e B, então existe uma função bijetiva h : A → B. Em termos da cardinalidade dos dois conjuntos, isso significa que se |A| ≤ |B| e |B| ≤ |A|, então |A| = |B|; A e B são ditos "equipolentes". Essa é obviamente uma propriedade muito útil para a ordenação de números cardinais. Este teorema não depende do axioma da escolha. (pt)
  • Теоре́ма Ка́нтора — Бернште́йна (в англ. литературе теоре́ма Ка́нтора — Бернште́йна — Шрёдера), утверждает, что если существуют инъективные отображения и между множествами и , то существует взаимооднозначное отображение. Другими словами, что мощности множеств и совпадают: Другими словами, теорема утверждает следующее: Из и следует, что где — кардинальные числа. (ru)
  • 施罗德-伯恩斯坦定理(英語:Schröder–Bernstein theorem),又称康托尔-伯恩斯坦-施罗德定理(Cantor-Bernstein-Schroeder theorem)是集合论中的一个基本定理,得名于康托尔、伯恩斯坦和施罗德。该定理陈述说:如果在集合 A 和 B 之间存在单射 f : A → B 和 g : B → A,则存在一个双射 h : A → B。從势的角度來看, 这意味着如果 |A| ≤ |B| 并且 |B| ≤ |A|,则 |A| = |B|,即A与B等势。显然,这是在基数排序中非常有用的特征。 (zh)
  • Теорема Кантора — Бернштейна (також теорема Кантора — Бернштейна — Шредера), стосується теорії множин та стверджує, що якщо в множині A елементів не менше, ніж в множині B (тобто, якщо в множині A існує підмножина, рівнопотужна множині B), а в множині B елементів не менше, ніж в множині A, то насправді елементів порівну, тобто існує бієкція (взаємно однозначна відповідність) між множинами A та B. Тобто: що якщо існують ін'єктивні відображення і між множинами і , то існує бієкція. Іншими словами, потужності множин і збігаються: Неформально, теорема стверджує наступне: Із і , випливає, що = .В даних нерівностях і є кардинальними числами. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 44218028 (xsd:integer)
dbo:wikiPageLength
  • 17808 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123353766 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • Cantor-Schroeder-Bernstein+theorem (en)
dbp:title
  • Cantor-Schroeder-Bernstein theorem (en)
  • Schröder-Bernstein Theorem (en)
dbp:urlname
  • Schroeder-BernsteinTheorem (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Cantorova-Bernsteinova věta (také Cantorova-Schröderova-Bernsteinova věta) je matematické tvrzení z oblasti teorie množin, které má zásadní význam pro srovnávání nekonečných mohutností. (cs)
  • In matematica, il teorema di Cantor-Bernstein-Schröder, a cui spesso si fa riferimento semplicemente come teorema di Cantor-Bernstein, afferma che, dati due insiemi e , se esistono due funzioni iniettive e , allora esiste una funzione biiettiva . (it)
  • ベルンシュタインの定理(ベルンシュタインのていり、カントール=ベルンシュタイン=シュレーダーの定理、シュレーダー=ベルンシュタインの定理、カントール=ベルンシュタインの定理とも、英: Schröder–Bernstein theorem)とは、集合 A から集合 B に単射 があり、集合 B から集合 A へも単射があれば、集合 A から集合 B への全単射があるというものである。濃度においては、これは |A| ≤ |B| かつ |B| ≤ |A| ならば |A| = |B| である、ということを言っているわけで、非常に基本的な要請がこの定理によって満たされることになる。 (ja)
  • 집합론에서, 칸토어-번슈타인 정리(영어: Cantor-Bernstein theorem)는 두 집합 사이에 두 방향으로 단사 함수가 존재하면 그 사이에 일대일 대응이 존재한다는 정리이다. 이는 선택 공리에 의존하지 않고 증명할 수 있다. (ko)
  • Twierdzenie Cantora-Bernsteina-Schrödera – twierdzenie teorii mnogości głoszące, że jeśli zbiór jest równoliczny z pewnym podzbiorem zbioru oraz zbiór jest równoliczny z pewnym podzbiorem zbioru to zbiory i są równoliczne. Dla zbiorów napiszemy, że ilekroć zbiór jest równoliczny z pewnym podzbiorem zbioru Przy tych oznaczeniach możemy wyrazić twierdzenie Cantora-Bernsteina-Schrödera w następujący sposób symboliczny: Jeśli oraz to Formułując jeszcze inaczej, twierdzenie to wyraża słabą antysymetrię relacji porządku na liczbach kardynalnych: Jeśli oraz to (pl)
  • In de axiomatische verzamelingenleer doet de stelling van Cantor-Bernstein-Schröder een uitspraak over de gelijkmachtigheid van twee verzamelingen. De stelling zegt namelijk dat als er tussen twee verzamelingen zowel een injectieve afbeeldingen van de ene in de andere verzameling is en ook van de andere in de ene, er een bijectieve afbeelding is tussen de beide verzamelingen, en de verzamelingen dus gelijkmachtig zijn. De stelling is genoemd naar Georg Cantor, Felix Bernstein en Ernst Schröder' (nl)
  • Em teoria de conjuntos, o Teorema de Cantor-Bernstein-Schroeder, assim chamado em homenagem a Georg Cantor, Felix Bernstein e Ernst Schröder, estabelece que se existem funções injetivas f : A → B e g : B → A entre os conjuntos A e B, então existe uma função bijetiva h : A → B. Em termos da cardinalidade dos dois conjuntos, isso significa que se |A| ≤ |B| e |B| ≤ |A|, então |A| = |B|; A e B são ditos "equipolentes". Essa é obviamente uma propriedade muito útil para a ordenação de números cardinais. Este teorema não depende do axioma da escolha. (pt)
  • Теоре́ма Ка́нтора — Бернште́йна (в англ. литературе теоре́ма Ка́нтора — Бернште́йна — Шрёдера), утверждает, что если существуют инъективные отображения и между множествами и , то существует взаимооднозначное отображение. Другими словами, что мощности множеств и совпадают: Другими словами, теорема утверждает следующее: Из и следует, что где — кардинальные числа. (ru)
  • 施罗德-伯恩斯坦定理(英語:Schröder–Bernstein theorem),又称康托尔-伯恩斯坦-施罗德定理(Cantor-Bernstein-Schroeder theorem)是集合论中的一个基本定理,得名于康托尔、伯恩斯坦和施罗德。该定理陈述说:如果在集合 A 和 B 之间存在单射 f : A → B 和 g : B → A,则存在一个双射 h : A → B。從势的角度來看, 这意味着如果 |A| ≤ |B| 并且 |B| ≤ |A|,则 |A| = |B|,即A与B等势。显然,这是在基数排序中非常有用的特征。 (zh)
  • El Teorema de Schröder-Bernstein (també conegut com a Teorema de Cantor-Bernstein o com a Teorema de Cantor-Schröder-Bernstein) afirma que: Si cadascun dels dos conjunts A i B són equivalents a un subconjunt de l'altre, aleshores A i B són equivalents. (ca)
  • Der Satz von Cantor-Bernstein-Schröder oder kurz Äquivalenzsatz ist ein Satz der Mengenlehre über die Mächtigkeiten zweier Mengen. Er ist nach den Mathematikern Georg Cantor (der ihn als erster formuliert hat), Felix Bernstein sowie Ernst Schröder (die Beweise veröffentlichten) benannt und wird in der Literatur auch als Cantor-Bernstein-Schröderscher [Äquivalenz-]Satz, Satz von Cantor-Bernstein, Äquivalenzsatz von Cantor-Bernstein, Satz von Schröder-Bernstein oder ähnlich bezeichnet. Allerdings wurde er unabhängig auch von Richard Dedekind bewiesen. (de)
  • Le théorème de Cantor-Bernstein, également appelé théorème de Cantor-Schröder-Bernstein, est le théorème de la théorie des ensembles qui affirme l’existence d'une bijection entre deux ensembles dès lors qu'il existe deux injections, l'une du second vers le premier l'autre du premier vers le second. Théorème — S'il existe une injection d'un ensemble E vers un ensemble F et une injection de F vers E, alors il existe une bijection de E sur F. (fr)
  • El teorema de Schröder y Bernstein establece un criterio para establecer si existe una función biyectiva entre dos conjuntos cualesquiera A y B: Para cualquier conjunto A y B, si existe una función inyectiva de A en B y existe una función inyectiva de B en A, entonces existe una correspondencia biunívoca entre B y A. Formalmente: (es)
  • In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this classically implies that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent. This is a useful feature in the ordering of cardinal numbers. (en)
  • Теорема Кантора — Бернштейна (також теорема Кантора — Бернштейна — Шредера), стосується теорії множин та стверджує, що якщо в множині A елементів не менше, ніж в множині B (тобто, якщо в множині A існує підмножина, рівнопотужна множині B), а в множині B елементів не менше, ніж в множині A, то насправді елементів порівну, тобто існує бієкція (взаємно однозначна відповідність) між множинами A та B. Тобто: що якщо існують ін'єктивні відображення і між множинами і , то існує бієкція. Іншими словами, потужності множин і збігаються: Неформально, теорема стверджує наступне: (uk)
rdfs:label
  • Teorema de Schröder-Bernstein (ca)
  • Cantorova–Bernsteinova věta (cs)
  • Satz von Cantor-Bernstein-Schröder (de)
  • Teorema de Cantor-Bernstein-Schröder (es)
  • Théorème de Cantor-Bernstein (fr)
  • Teorema di Cantor-Bernstein-Schröder (it)
  • 칸토어-번슈타인 정리 (ko)
  • ベルンシュタインの定理 (ja)
  • Stelling van Cantor-Bernstein-Schröder (nl)
  • Twierdzenie Cantora-Bernsteina-Schrödera (pl)
  • Schröder–Bernstein theorem (en)
  • Теорема Кантора — Бернштейна (ru)
  • Teorema de Cantor-Bernstein-Schroeder (pt)
  • 康托尔-伯恩斯坦-施罗德定理 (zh)
  • Теорема Кантора — Бернштейна (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License