dbo:abstract
|
- In representation theory, polarization is the maximal totally isotropic subspace of a certain skew-symmetric bilinear form on a Lie algebra. The notion of polarization plays an important role in construction of irreducible unitary representations of some classes of Lie groups by means of the orbit method as well as in harmonic analysis on Lie groups and mathematical physics. (en)
- Поляриза́ция в теории представлений — максимальное вполне изотропное подпространство определённой кососимметрической билинейной формы на алгебре Ли. Понятие поляризации играет важную роль при построении неприводимых унитарных представлений некоторых классов групп Ли , а также в гармоническом анализе на группах Ли и математической физике. (ru)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6606 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In representation theory, polarization is the maximal totally isotropic subspace of a certain skew-symmetric bilinear form on a Lie algebra. The notion of polarization plays an important role in construction of irreducible unitary representations of some classes of Lie groups by means of the orbit method as well as in harmonic analysis on Lie groups and mathematical physics. (en)
- Поляриза́ция в теории представлений — максимальное вполне изотропное подпространство определённой кососимметрической билинейной формы на алгебре Ли. Понятие поляризации играет важную роль при построении неприводимых унитарных представлений некоторых классов групп Ли , а также в гармоническом анализе на группах Ли и математической физике. (ru)
|
rdfs:label
|
- Polarization (Lie algebra) (en)
- Поляризация (алгебра Ли) (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |