In mathematics, an orthogonal symmetric Lie algebra is a pair consisting of a real Lie algebra and an automorphism of of order such that the eigenspace of s corresponding to 1 (i.e., the set of fixed points) is a compact subalgebra. If "compactness" is omitted, it is called a symmetric Lie algebra. An orthogonal symmetric Lie algebra is said to be effective if intersects the center of trivially. In practice, effectiveness is often assumed; we do this in this article as well. The canonical example is the Lie algebra of a symmetric space, being the differential of a symmetry.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |