An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, an orthogonal symmetric Lie algebra is a pair consisting of a real Lie algebra and an automorphism of of order such that the eigenspace of s corresponding to 1 (i.e., the set of fixed points) is a compact subalgebra. If "compactness" is omitted, it is called a symmetric Lie algebra. An orthogonal symmetric Lie algebra is said to be effective if intersects the center of trivially. In practice, effectiveness is often assumed; we do this in this article as well. The canonical example is the Lie algebra of a symmetric space, being the differential of a symmetry.

Property Value
dbo:abstract
  • In mathematics, an orthogonal symmetric Lie algebra is a pair consisting of a real Lie algebra and an automorphism of of order such that the eigenspace of s corresponding to 1 (i.e., the set of fixed points) is a compact subalgebra. If "compactness" is omitted, it is called a symmetric Lie algebra. An orthogonal symmetric Lie algebra is said to be effective if intersects the center of trivially. In practice, effectiveness is often assumed; we do this in this article as well. The canonical example is the Lie algebra of a symmetric space, being the differential of a symmetry. Let be effective orthogonal symmetric Lie algebra, and let denotes the -1 eigenspace of . We say that is of compact type if is compact and semisimple. If instead it is noncompact, semisimple, and if is a Cartan decomposition, then is of noncompact type. If is an Abelian ideal of , then is said to be of Euclidean type. Every effective, orthogonal symmetric Lie algebra decomposes into a direct sum of ideals , and , each invariant under and orthogonal with respect to the Killing form of , and such that if , and denote the restriction of to , and , respectively, then , and are effective orthogonal symmetric Lie algebras of Euclidean type, compact type and noncompact type. (en)
  • Inom matematiken är en ortogonal symmetrisk Liealgebra ett par bestående av en reell Liealgebra och en automorfi av av ordning så att egenrummet av s korresponderande till 1 (d.v.s. rummet av fixpunkter) är en . Om kompaktheten utelämnas kallas den en symmetrisk Liealgebra. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 30505908 (xsd:integer)
dbo:wikiPageLength
  • 2681 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092811282 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Inom matematiken är en ortogonal symmetrisk Liealgebra ett par bestående av en reell Liealgebra och en automorfi av av ordning så att egenrummet av s korresponderande till 1 (d.v.s. rummet av fixpunkter) är en . Om kompaktheten utelämnas kallas den en symmetrisk Liealgebra. (sv)
  • In mathematics, an orthogonal symmetric Lie algebra is a pair consisting of a real Lie algebra and an automorphism of of order such that the eigenspace of s corresponding to 1 (i.e., the set of fixed points) is a compact subalgebra. If "compactness" is omitted, it is called a symmetric Lie algebra. An orthogonal symmetric Lie algebra is said to be effective if intersects the center of trivially. In practice, effectiveness is often assumed; we do this in this article as well. The canonical example is the Lie algebra of a symmetric space, being the differential of a symmetry. (en)
rdfs:label
  • Orthogonal symmetric Lie algebra (en)
  • Ortogonal symmetrisk Liealgebra (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License