dbo:abstract
|
- In mathematics, a linear operator is called locally finite if the space is the union of a family of finite-dimensional -invariant subspaces. In other words, there exists a family of linear subspaces of , such that we have the following:
*
*
* Each is finite-dimensional. An equivalent condition only requires to be the spanned by finite-dimensional -invariant subspaces. If is also a Hilbert space, sometimes an operator is called locally finite when the sum of the is only dense in . (en)
- Inom matematiken är en linjär operator lokalt finit om rummet är unionen av en familj av finit-dimensionella -. Med andra ord, det existerar en familj av linjära underrum av , sådan att:
*
*
* Varje är finit-dimensionell. (sv)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3337 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, a linear operator is called locally finite if the space is the union of a family of finite-dimensional -invariant subspaces. In other words, there exists a family of linear subspaces of , such that we have the following:
*
*
* Each is finite-dimensional. An equivalent condition only requires to be the spanned by finite-dimensional -invariant subspaces. If is also a Hilbert space, sometimes an operator is called locally finite when the sum of the is only dense in . (en)
- Inom matematiken är en linjär operator lokalt finit om rummet är unionen av en familj av finit-dimensionella -. Med andra ord, det existerar en familj av linjära underrum av , sådan att:
*
*
* Varje är finit-dimensionell. (sv)
|
rdfs:label
|
- Locally finite operator (en)
- Lokalt finit operator (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |