An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In statistics, kernel-independent component analysis (kernel ICA) is an efficient algorithm for independent component analysis which estimates source components by optimizing a generalized variance contrast function, which is based on representations in a reproducing kernel Hilbert space. Those contrast functions use the notion of mutual information as a measure of statistical independence.

Property Value
dbo:abstract
  • In statistics, kernel-independent component analysis (kernel ICA) is an efficient algorithm for independent component analysis which estimates source components by optimizing a generalized variance contrast function, which is based on representations in a reproducing kernel Hilbert space. Those contrast functions use the notion of mutual information as a measure of statistical independence. (en)
dbo:wikiPageID
  • 48312994 (xsd:integer)
dbo:wikiPageLength
  • 3620 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 912168648 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In statistics, kernel-independent component analysis (kernel ICA) is an efficient algorithm for independent component analysis which estimates source components by optimizing a generalized variance contrast function, which is based on representations in a reproducing kernel Hilbert space. Those contrast functions use the notion of mutual information as a measure of statistical independence. (en)
rdfs:label
  • Kernel-independent component analysis (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License