An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, more specifically in the field of ring theory, a ring has the invariant basis number (IBN) property if all finitely generated free left modules over R have a well-defined rank. In the case of fields, the IBN property becomes the statement that finite-dimensional vector spaces have a unique dimension.

Property Value
dbo:abstract
  • In mathematics, more specifically in the field of ring theory, a ring has the invariant basis number (IBN) property if all finitely generated free left modules over R have a well-defined rank. In the case of fields, the IBN property becomes the statement that finite-dimensional vector spaces have a unique dimension. (en)
  • 数学、具体的には環論において、環が invariant basis number (IBN) property を持つとは、R 上のすべての有限生成自由左加群が well-defined な階数(ランク)を持つことをいう。体の場合には、IBN property は有限次元ベクトル空間は一意的な次元を持つという主張になる。 (ja)
dbo:wikiPageID
  • 3327998 (xsd:integer)
dbo:wikiPageLength
  • 6367 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118108385 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Proof (en)
dbp:toggle
  • left (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, more specifically in the field of ring theory, a ring has the invariant basis number (IBN) property if all finitely generated free left modules over R have a well-defined rank. In the case of fields, the IBN property becomes the statement that finite-dimensional vector spaces have a unique dimension. (en)
  • 数学、具体的には環論において、環が invariant basis number (IBN) property を持つとは、R 上のすべての有限生成自由左加群が well-defined な階数(ランク)を持つことをいう。体の場合には、IBN property は有限次元ベクトル空間は一意的な次元を持つという主張になる。 (ja)
rdfs:label
  • Invariant basis number (en)
  • Invariant basis number (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License