An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In real algebraic geometry, Harnack's curve theorem, named after Axel Harnack, gives the possible numbers of connected components that an algebraic curve can have, in terms of the degree of the curve. For any algebraic curve of degree m in the real projective plane, the number of components c is bounded by The maximum number is one more than the maximum genus of a curve of degree m, attained when the curve is nonsingular. Moreover, any number of components in this range of possible values can be attained. This theorem formed the background to Hilbert's sixteenth problem.

Property Value
dbo:abstract
  • En geometria algebraica real, el teorema de la corba de Harnack, amb el nom d'Axel Harnack, dona el possible nombre de components connectats que pot tenir una corba algebraica, en termes del grau de la corba. Per a qualsevol corba algebraica de grau m en el pla projectiu real, el nombre de components c està limitat per El nombre màxim és un més que el gènere màxim d'una corba de grau m, que s'obté quan la corba no és singular. A més, es pot aconseguir qualsevol nombre de components en aquest rang de possibles valors Una corba que aconsegueix el nombre màxim de components reals s'anomena una corba M (de "màxim"), per exemple, una corba el·líptica amb dos components, com ara o la , un quàrtic amb quatre components, són exemples de corbes M. Aquest teorema va servir de base al . En un desenvolupament recent, es mostra una és una corba de la qual l'ameba té una àrea igual al del polinomi P, que s'anomena la corba característica dels models dímers, i cada corba de Harnack és la corba espectral d'algun . (ca)
  • In real algebraic geometry, Harnack's curve theorem, named after Axel Harnack, gives the possible numbers of connected components that an algebraic curve can have, in terms of the degree of the curve. For any algebraic curve of degree m in the real projective plane, the number of components c is bounded by The maximum number is one more than the maximum genus of a curve of degree m, attained when the curve is nonsingular. Moreover, any number of components in this range of possible values can be attained. A curve which attains the maximum number of real components is called an M-curve (from "maximum") – for example, an elliptic curve with two components, such as or the Trott curve, a quartic with four components, are examples of M-curves. This theorem formed the background to Hilbert's sixteenth problem. In a recent development a is shown to be a curve whose amoeba has area equal to the Newton polygon of the polynomial P, which is called the characteristic curve of dimer models, and every Harnack curve is the spectral curve of some dimer model. (en)
  • En géométrie algébrique réelle, le théorème de Harnack donne les nombres possibles de composantes connexes que peut avoir une courbe algébrique réelle, en fonction du degré (ou du genre) de la courbe. Pour une courbe algébrique de degré m du plan projectif réel, le nombre c de composantes est borné par: De plus, pour tout nombre vérifiant ces inégalités, il existe des courbes qui ont exactement ce nombre de composantes. Ce théorème est à la base du seizième problème de Hilbert. Le nombre maximum vaut 1 de plus que le genre d'une courbe non-singulière de degré m. Une courbe qui atteint le nombre maximum possible de composantes réelles pour son degré est appelée une M-courbe (M pour "maximum") – par exemple, une courbe elliptique à deux composantes connexes ou la courbe de Trott, une courbe quartique avec quatre composantes connexes, sont des exemples de M-courbes. * La courbe elliptique (lisse de degré 3) sur la gauche est une M-courbe, car elle a le nombre maximum (2) de composantes connexes, tandis que la courbe elliptique à droite n'a qu'une seule composante. * La courbe de Trott, montrée ici avec 7 de ses bitangentes, est une M-courbe quartique (i.e. de degré 4), car elle atteint le maximum (4) de composantes connexe d'une courbe de ce degré. (fr)
  • 実代数幾何学において、(Carl Gustav Axel Harnack)に因み命名されたハルナック曲線定理 (Harnack's curve theorem) は、代数曲線が持つことのできる連結成分の可能な数を、曲線の次数によって記述する。実射影平面の中の次数 m の代数曲線では、成分の数 c は、 の範囲の中にある。最大数は次数 m の曲線の最大種数に 1 を足したもので、曲線が非特異なときに達成される。さらに、この範囲の中の任意の値は、実際に可能である。 実成分の最大数を持つ曲線を(最大 (maximum) の m から)M-曲線(M-curve)と呼ぶ。例えば、 のような、2つの成分を持つ3次の楕円曲線や、4つの成分を持つ4次のは、M-曲線の例である。 この定理はの背景をなしている。 最近の発展では、ハルナック曲線は、そのアメーバが(ダイマー模型の特性曲線と呼ばれる)多項式 P のと同じ面積を持つような曲線であり、さらに、すべてのハルナック曲線はあるダイマー模型のスペクトル曲線となっていることが示された。 (ja)
  • Теорема Гарнака о кривых, названная именем Акселя Гарнака, даёт возможное число связных компонент, которое может иметь алгебраическая кривая в терминах степени кривой. Для любой алгебраической кривой степени m на вещественной проективной плоскости число компонент c ограничено выражением Максимальное число компонент на единицу больше максимального рода кривой порядка m, достигаемого в случае несингулярности кривой. Более того, любое число компонент в этом диапазоне возможных значений может быть достигнуто. Кривая, достигающая максимального числа вещественных компонент, называется M-кривой (от «maximum») . Например, эллиптическая кривая с двумя компонентами, такая как или кривая Тротта, квартика с четырьмя компонентами, являются примерами M-кривых. Эта теорема образует предпосылки для шестнадцатой проблемы Гильберта. В современных исследованиях показано, что кривые Гарнака — это кривые, амёба которых имеет площадь, равную многочлена P, который называется характеристической кривой димерных моделей, и любая кривая Гарнака является спектральной кривой некоторой модели димеров. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5209604 (xsd:integer)
dbo:wikiPageLength
  • 3105 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1017856365 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • 実代数幾何学において、(Carl Gustav Axel Harnack)に因み命名されたハルナック曲線定理 (Harnack's curve theorem) は、代数曲線が持つことのできる連結成分の可能な数を、曲線の次数によって記述する。実射影平面の中の次数 m の代数曲線では、成分の数 c は、 の範囲の中にある。最大数は次数 m の曲線の最大種数に 1 を足したもので、曲線が非特異なときに達成される。さらに、この範囲の中の任意の値は、実際に可能である。 実成分の最大数を持つ曲線を(最大 (maximum) の m から)M-曲線(M-curve)と呼ぶ。例えば、 のような、2つの成分を持つ3次の楕円曲線や、4つの成分を持つ4次のは、M-曲線の例である。 この定理はの背景をなしている。 最近の発展では、ハルナック曲線は、そのアメーバが(ダイマー模型の特性曲線と呼ばれる)多項式 P のと同じ面積を持つような曲線であり、さらに、すべてのハルナック曲線はあるダイマー模型のスペクトル曲線となっていることが示された。 (ja)
  • En geometria algebraica real, el teorema de la corba de Harnack, amb el nom d'Axel Harnack, dona el possible nombre de components connectats que pot tenir una corba algebraica, en termes del grau de la corba. Per a qualsevol corba algebraica de grau m en el pla projectiu real, el nombre de components c està limitat per El nombre màxim és un més que el gènere màxim d'una corba de grau m, que s'obté quan la corba no és singular. A més, es pot aconseguir qualsevol nombre de components en aquest rang de possibles valors Aquest teorema va servir de base al . (ca)
  • In real algebraic geometry, Harnack's curve theorem, named after Axel Harnack, gives the possible numbers of connected components that an algebraic curve can have, in terms of the degree of the curve. For any algebraic curve of degree m in the real projective plane, the number of components c is bounded by The maximum number is one more than the maximum genus of a curve of degree m, attained when the curve is nonsingular. Moreover, any number of components in this range of possible values can be attained. This theorem formed the background to Hilbert's sixteenth problem. (en)
  • En géométrie algébrique réelle, le théorème de Harnack donne les nombres possibles de composantes connexes que peut avoir une courbe algébrique réelle, en fonction du degré (ou du genre) de la courbe. Pour une courbe algébrique de degré m du plan projectif réel, le nombre c de composantes est borné par: De plus, pour tout nombre vérifiant ces inégalités, il existe des courbes qui ont exactement ce nombre de composantes. Ce théorème est à la base du seizième problème de Hilbert. Le nombre maximum vaut 1 de plus que le genre d'une courbe non-singulière de degré m. * * (fr)
  • Теорема Гарнака о кривых, названная именем Акселя Гарнака, даёт возможное число связных компонент, которое может иметь алгебраическая кривая в терминах степени кривой. Для любой алгебраической кривой степени m на вещественной проективной плоскости число компонент c ограничено выражением Максимальное число компонент на единицу больше максимального рода кривой порядка m, достигаемого в случае несингулярности кривой. Более того, любое число компонент в этом диапазоне возможных значений может быть достигнуто. Эта теорема образует предпосылки для шестнадцатой проблемы Гильберта. (ru)
rdfs:label
  • Teorema de la corba de Harnack (ca)
  • Harnack's curve theorem (en)
  • Théorème de Harnack (fr)
  • ハルナック曲線定理 (ja)
  • Теорема Гарнака о кривых (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License