An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1. It is named after William Fulton and Johan Hansen, who proved it in 1979. The formal statement is that if V and W are irreducible algebraic subvarieties of a projective space P, all over an algebraically closed field, and if in terms of the dimension of an algebraic variety, then the intersection U of V and W is connected.

Property Value
dbo:abstract
  • In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1. It is named after William Fulton and Johan Hansen, who proved it in 1979. The formal statement is that if V and W are irreducible algebraic subvarieties of a projective space P, all over an algebraically closed field, and if in terms of the dimension of an algebraic variety, then the intersection U of V and W is connected. More generally, the theorem states that if is a projective variety and is any morphism such that , then is connected, where is the diagonal in . The special case of intersections is recovered by taking , with the natural inclusion. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5287504 (xsd:integer)
dbo:wikiPageLength
  • 2400 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1100802998 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1. It is named after William Fulton and Johan Hansen, who proved it in 1979. The formal statement is that if V and W are irreducible algebraic subvarieties of a projective space P, all over an algebraically closed field, and if in terms of the dimension of an algebraic variety, then the intersection U of V and W is connected. (en)
rdfs:label
  • Fulton–Hansen connectedness theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License